< IJCNLP 2008, Jan. 10th, 2008 >

Computing Paraphrasability of Syntactic Variants Using Web Snippets

Atsushi FUJITA and Satoshi SATO Nagoya Univ., Japan

Automatic Paraphrasing

Fundamental in NLP

- Recognition: IR, IE, QA, Multi-Doc.Summarization
- Generation: MT, TTS, Authoring aids
- Resources required
 - Handcrafted knowledge
 - Thesauri [Many work]
 - Transformation rules [Mel'cuk+, 87] [Dras, 99] [Jacquemin, 99]
 - Automatic knowledge acquisition
 - Distributional similarity [Lin+, 01] [Szpektor+, 04]
 - Aligning comparable/bilingual corpora [Many work]

Paraphrase Knowledge

Template-like representation

Lexical paraphrases

Morpho-syntactic paraphrases (syntactic variants)

Removing light-verb

\blacksquare Lack of applicability conditions \Rightarrow incorrect results

Task Description

Computing *paraphrasability* between phrases

- Input: automatically generated paraphrase candidates
 - Pair of original and generated phrases (s and t)

- Output: paraphrasability score [0,1]
 - Is t grammatical ?
 - Does t hold if s holds ? (semantic equivalence or inclusion)
 - Is t syntactically substitutable for s in some context ?

Issues and Solutions

How to measure similarity between phrases ?

- Contextual similarity: distributional similarity
 - Bag of words / Bag of dependency relations
- Constituent similarity: handling syntactic variants
 - Syntactic transformation + Lexical derivation
- How to deal with data sparseness problem ?
 - Collect example sentences of phrases from Web snippets
 - Assessing grammaticality

Outline

- 1. Task Description
- 2. Paraphrases Handled
- 3. Proposed Method
- 4. Experiments
- 5. Discussion
- 6. Conclusion

Paraphrases of Predicate Phrases

Paraphrases Handled

Morpho-syntactic paraphrases (syntactic variants)

- Syntactic transformation + Lexical derivation
 - Constituent similarity is guaranteed a little
 - e.g. Head-switching, Light-verb construction, Category-shift
 Climate is in our favor
 Climate is favorable for us

Predicate phrases of Japanese

Syntactic Variant Generator for Japanese

Outline

- 1. Task Description
- 2. Paraphrases Handled
- 3. Proposed Method
- 4. Experiments
- 5. Discussion
- 6. Conclusion

Overview

Step 1. Snippet Retrieval

``Phrase search''

- Yahoo! JAPAN Web-search API
- 500 top snippets

Step 2. Feature Extraction

HITS: # of pages Yahoo! API returns

• Larger HITS \Rightarrow *t* is more likely grammatical

BOW: content words around the phrase in snippets

- BOWs surrounding s and t have similar distribution
 - \Rightarrow s and t are semantically similar

MOD: modifiers and modifiees of the phrase in snippets

- *s* and *t* share a number of modifiers and modifiees
 - \Rightarrow s and t are syntactically substitutable

Extracting MOD Features

Modifier / modifiee chunk (bunsetsu)

- Relation types (Depend / Appositive / Parallel)
- Base form of the head-word (content word)
- Some types of functional words (if any)

Step 2. Feature Extraction (Anc)

Source-focused feature extraction

- 1. Determine anchor *a* which strongly associates with *s*
 - Noun which most frequently modifies s (one of MOD features)

- 2. Retrieve snippets for *s* AND *a* and *t* AND *a*
- 3. Extract BOW and MOD features from those snippets

Step 3. Paraphrasability Computation

Lin's measure [Lin+, 01]

$$Par_{Lin}(s \Rightarrow t) = \frac{\sum_{f \in F_s \cap F_t} \left(w(s, f) + w(t, f) \right)}{\sum_{f \in F_s} w(s, f) + \sum_{f \in F_t} w(t, f)}$$

- F_s , F_t : Feature sets for s and t
- w(x, f): Weight of feature f in F_x (frequency in snippets)
- **skew**: α -skew divergence [Lee, 99]

$$Par_{skew}(s \Rightarrow t) = \exp(-d_{skew}(t,s))$$
$$d_{skew}(t,s) = D(P_s ||\alpha P_t + (1-\alpha)P_s)$$

•
$$P_s = P(f \mid s), P_t = P(f \mid t)$$

α : approximation degree of KL divergence [0,1]

Summary

Features: Contextual features of entire phrase

- c.f. Marginal features [Torisawa, 06] [Pantel+, 07]
- BOW, MOD
- Weight of features: Frequency in snippets
 - c.f. pair-wise MI [Lin+, 01] [Pantel+, 07]
 - c.f. Relative Focus Feature [Geffet+, 05]
- DS measures
 - Lin's measure (symmetric) [Lin+, 01]
 - α -skew divergence (asymmetric) [Lee, 99]

Outline

- 1. Task Description
- 2. Paraphrases Handled
- 3. Proposed Method
- 4. Experiments
- 5. Discussion
- 6. Conclusion

Setup: Candidate Generation

- 6 basic phrase types
- Most frequent 1,000+ phrases for each type
 - Mainichi newspaper corpus (1991-2005, 1.5GB)
 - Referring to dependency trees

Syntactic variant generator for Japanese [Fujita+, 07]

$\frac{\text{Trans. Pat.}}{N:C:V \Rightarrow adv(V):vp(N)}$		Gen. Fun vp(N)	<u>c.</u>	$\frac{\text{Lex. Func.}}{adv(V)}$			
Phrase type	# of tokens	# of types	tl	n types	Cov.(%)	Output	Ave.
$\overline{N:C:V}$	20,200,041	4,323,756	1,000	0.1,014	10.7	1,536	(489) 3.1
$N_1 : N_2 : C : V$	3,796,351	2,013,682	10′	7 1,005	6.3	88,040	(966) 91.1
$N:C:V_1:V_2$	325,964	213,923	1.	5 1,022	12.9	75,344	(982) 76.7
N:C:Adv:V	1,209,265	923,475	2	1,097	3.9	8,281	(523) 15.7
Adj:N:C:V	378,617	233,952	20) 1,049	14.1	128	(50) 2.6
N:C:Adj	788,038	203,845	80	5 1,003	31.4	3,212	(992) 3.2
Total	26,698,276	7,912,633		6,190		176,541 ((4,002) 44.1

Examples of Phrases

N:C:V			N:C:Adv:V				
kakunin-o isogu	kentou-o	sarani	susumeru				
checking-ACC to hurry to hurry checking it	consideration-ACC to take consideration	further n further	to go ahead				
$N_1:N_2:C:V$			N:C:Adj				
songai-baisho-o m	notomeru ne	odo-ga	itai				
damage-reparation-ACC to to demand reparation for damage	demand thr ge to	throat-NOM be painful to have a sore throat					
$N:C:V_1:V_2$			Adj:N:C				
toukei-o tori-hajir	neru takai	i hyouk	xa-o ukeru				
statistics-ACC to take-to star to start collect statistics	t high to be ra	assessme Ited high	ent-ACC to receive				

Setup: Computing Paraphrasability Scores

15 measures:

- Proposed: {HITS,{BOW,MOD,HAR}×{Lin,skew}}×{Nor,Anc}
- BL (Mainichi): HITS using 1.5GB newspaper corpus

	Nor.HITS		N	Nor.BOW.*		Nor.MOD.*			
Phrase type	Output	Av	e. Outpu	t Ave.	Output	Av	ve.		
N:C:V	1,405	(489) 2	9 1,402	2 (488) 2.9	1,396	(488) 2	.9		
$N_1:N_2:C:V$	9,544	(964) 9	9 9,249	9 (922)10.0	8,652	(921) 9	.4		
$N:C:V_1:V_2$	3,769	(876) 4	3 3,400	6 (774) 4.4	3,109	(762) 4	.1		
N:C:Adv:V	690	(359) 1	9 500	6 (247) 2.0	475	(233) 2	.0		
Adj:N:C:V	45	(20) 2	3 45	5 (20) 2.3	42	(17) 2	.5		
N:C:Adj	1,459	(885) 1	6 1,459	9 (885) 1.6	1,399	(864) 1	.6		
Total	16,912	(3,593) 4	7 16,06	7 (3,336) 4.8	15,073	(3,285) 4			
	Anc.HITS		Aı	Anc.BOW.*		Anc.MOD.*		Mainichi	
	Output	Av	e. Outpu	t Ave.	Output	Av	e. Output	Ave.	
	1 368								
	1,500	(488) 2	8 1,360	5 (487) 2.8	1,360	(487) 2	.8 1,103	(457) 2.4	
	7,437	(488) 2 (897) 8	8 1,360 3 7,424	5 (487) 2.8 1 (894) 8.3	1,360 6,795	(487) 2 (891) 7	.8 1,103 .6 3,041	(457) 2.4 (948) 3.2	
	7,437 2,517	(488) 2 (897) 8 (697) 3	8 1,360 3 7,424 6 2,497	6 (487) 2.8 4 (894) 8.3 7 (690) 3.6	1,360 6,795 2,258	 (487) 2 (891) 7 (679) 3 	.81,103.63,041.31,156	(457) 2.4 (948) 3.2 (548) 2.1	
	7,437 2,517 342	 (488) 2 (897) 8 (697) 3 (174) 2 	8 1,360 3 7,424 6 2,497 0 339	6 (487) 2.8 4 (894) 8.3 7 (690) 3.6 9 (173) 2.0	1,360 6,795 2,258 322	 (487) 2 (891) 7 (679) 3 (168) 1 	.81,103.63,041.31,156.9215	(457) 2.4 (948) 3.2 (548) 2.1 (167) 1.3	
	7,437 2,517 342 41	 (488) 2 (897) 8 (697) 3 (174) 2 (18) 2 	8 1,360 3 7,424 6 2,497 0 339 3 42	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,360 6,795 2,258 322 39	 (487) 2 (891) 7 (679) 3 (168) 1 (16) 2 	.81,103.63,041.31,156.9215.414	(457) 2.4 (948) 3.2 (548) 2.1 (167) 1.3 (7) 2.0	
	7,437 2,517 342 41 1,235	$\begin{array}{c} (488) \ 2 \\ (897) \ 8 \\ (697) \ 3 \\ (174) \ 2 \\ (18) \ 2 \\ (809) \ 1 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 (487) 2.8 4 (894) 8.3 7 (690) 3.6 9 (173) 2.0 1 (18) 2.3 5 (809) 1.5	1,360 6,795 2,258 322 39 1,161	$\begin{array}{c} (487) & 2 \\ (891) & 7 \\ (679) & 3 \\ (168) & 1 \\ (16) & 2 \\ (779) & 1 \end{array}$.81,103.63,041.31,156.9215.414.5559	(457)2.4(948)3.2(548)2.1(167)1.3(7)2.0(459)1.2	

21

Evaluation 1: Ev.Gen

Question

• Can a correct paraphrase have the highest score among candidates for a source phrase ?

Judgment (2 assesors)

• For 200 input, the best candidates of 15 models

Results 1: Ev.Gen

■ Mainichi << *.HITS ≒ *.BOW.* < *.MOD.* ≒ *.HAR.*

- Web enables us to compute paraphrasability accurately
- Candidates with higher scores are more likely correct
 - e.g. Lenient Prec. over 93% (th=0.5)

Evaluation 2: Ev.Rec

Question

- How is the method useful for collecting paraphrase instances ?
- Judgment (2 assesors)
 - 200 best candidates for each of 15 models

Results 2: Ev.Rec

- Mainichi ≒ *.HITS << *.BOW.* ≒ *.MOD.* ≒ *.HAR.*
 - DS measures outperformed HITS
 - Lenient Prec. almost reach a ceiling
- Nor.X.* \rightleftharpoons Anc.X.* again
 - Anchor selection might be inappropriate
 - 2 or more content words make *s* rarely ambiguous

Results 2: Ev.Rec

Remaining problems

- Dropping N_1 from $N_1:N_2:C:V$
 - Typically functions as generalization

vagai-konsato outdoors-concert

• N_1 sometimes plays as the semantic head of $N_1:N_2$

- Solutions:
 - Semantic parsing, Phrase boundary detection, etc.

Outline

- 1. Task Description
- 2. Paraphrases Handled
- 3. Proposed Method
- 4. Experiments
- 5. Discussion
- 6. Conclusion

Discussion: Issues Addressed

Measurement of paraphrasability between phrases

- Reasonably nice (Ev.Gen: over 65%, Ev.Rec: over 96%)
 - Combining constituent and contextual similarities
- Room for improvement
 - Feature selection [Hagiwara+, 08]
 - Feature weighting [Lin+, 01] [Geffet+, 05]
- Data sparseness problem
 - Not perfectly solved
 - TSUBAKI offers larger number of snippets [Shinzato+, 08]

Discussion: Technical Issues

Coverage

- For 50% input, no candidate is output
- More robust generation system
 - To generate a wider range of paraphrases
 - To handle other types of phrases with less human-labor

Portability

- 90% of candidates are filtered out due to 0 HITS
- Use SLMs to prune incorrect candidates before querying

Conclusion

Computing *paraphrasability* between phrases

- Input: paraphrase candidates
 - Automatically generated
 - Syntactic variants
 - Predicate phrases in Japanese
- Output: paraphrasability score [0,1]
 - Is t grammatical ?
 - Does t hold if s holds ? (semantic equivalence or inclusion)
 - Is t syntactically substitutable for s in some context ?

Proposed method achieved reasonable results

• Ev.Gen: over 65% (over 93% w/ th=0.5), Ev.Rec: over 96%