< IJCNLP 2005, Oct. 11th, 2005 >

Exploiting Lexical Conceptual Structure for Paraphrase Generation

<u>Atsushi FUJITA</u>⁽¹⁾, Kentaro INUI⁽²⁾, Yuji MATSUMOTO⁽²⁾ ⁽¹⁾ Kyoto University ⁽²⁾ Nara Institute of Science and Technology

Generating & Recognizing Paraphrases

Paraphrases

- "Alternative ways to convey the same information" (IWP)
- Middleware for a wide range of application

Generation

- Text simplification [Carroll et al., 1999] [Inui et al., 2003]
- Pre- and post-editing for MT [Shirai et al., 1995]
- Recognition
 - QA [Hermjakob et al., 2002] [Takahashi et al., 2004]
 - Multi-document summarization [Barzilay et al., 2003]

Issues

Issue: to explore...

- · what sorts of lexical properties affect
- how existing framework of lexical semantics can be used to represent them

Our attempt

- Exploit Lexical Conceptual Structure (LCS)
 - [Jackendoff, 1990]
 Examine current theory and implementation of LCS for Japanese [Kageyama, 1996] [Takeuchi et al., 2002]
 - Develop an LCS-based paraphrase generation model
 - Case study on paraphrasing of LVCs in Japanese

Contents

- 1. Issues and goals
- ▶ 2. LCS
 - 3. Paraphrasing of LVCs in Japanese
 - 4. LCS-based paraphrase generation model
 - 5. Experiments
 - 6. Conclusion

Overview of LCS

What's LCS? [Jackendoff, 1990]

- A verb classification which reflects
 - several syntactic and semantic properties of verbs Agentivity: "位置する" (to locate) : Non-agentive "遊ぶ" (to play) : Agentive
 - Focus of statement: "与える" (to give) : Agent "受ける" (to receive) : Goal
 - Link between syntax and semantics (Linking): "遷移する" (to transit) : (NOM, ACC) = (Theme, Goal) "届ける" (to deliver) : (NOM, ACC, DAT) = (Agent, Theme, Goal)

Electronic resource and application

English LCS Verb Lexicon

- 4,163 verbs / 468 LCS types
- MT[Dorr, 1997][Habash et al., 2003], NLG [Traum et al., 2000]
- Takeuchi's Japanese LCS dictionary
 - 1,165 verbs / 16 LCS types
 - Compound noun analysis [Takeuchi et al., 2002]
- Further projects are running (for Japanese) [Kato et al., 2005] [Takeuchi et al., 2005]

Contents

- 1. Issues and goals
- 2. LCS
- Paraphrasing of LVCs in Japanese
- 4. LCS-based paraphrase generation model
- 5. Experiments
- 6. Conclusion

[shopper]

State of affair

NOM

BECOME

BE AT

[customer] DAT

[product]y

ACC

- Generation:
 - A decision list
 - Causativization * 2
 - Passivization * 1
 - Leave active * 2

Contents

- Issues and goals 1.
- LCS 2.
- Paraphrasing of LVCs in Japanese 3.
- LCS-based paraphrase generation model 4
- Experiments 5.
- Conclusion 6.

Setting

LCS dictionary

- 1,165 deverbal nouns (T-LCS dic. ver. 0.95)
- 40 frequent light-verbs (manually collected and assigned LCS)
- Gold-standard
 - (1) 3 clauses for each of 245 most frequent types of LVC (2) annotators produced same paraphrases for 711 clauses in terms of determining Voice and Syntactic cases

Models

- LM (baseline): selects a combination of voice and syntactic cases
- · LCS (proposed): generates all semantically explainable candidates
- . LCS+LM: filters anomalies among the output of LCS

Results

	LM	LCS	LCS+LM
# of candidates	547	798	717
# of correct paraphrases	322	624	609
# of incorrect paraphrases	225	174	108
Recall	.453	.878	.857
Precision	.589	.782	.849
F-measure(α =0.5)	.512	.827	.852

LM < LCS < LCS+LM</p>

- · Lexical properties encoded in LCS are useful
- . LM itself does not work well, but contributes to filter out anomalies among semantically derived paraphrases

rror distribution			
		LCS	LCS+LM
(1) Ambiguous role of dative	Step 1	78	47
(2) Transformation algorithm	Step 2	59	36
(3) Definition of LCS	Step 0	30	19
Other errors	-	7	6
Total	-	174	108

Countermove

- · LCS typology should be firstly refined
- For (1), semantic parsing is necessary
- For (2), transformation principles should be reconsidered

Recent advances in semantic parsing

Semantically annotated corpus / lexicon

- FrameNet [Baker et al., 1998]
- VerbNet [Kipper et al., 1998]
- Propositional Bank [Palmer et al., 2005]
- IAMTC [Dorr et al., 2004]
- Semantic parsing technology
 - Word sense disambiguation, semantic role labeling, etc.
 - CoNLL-2004, CoNLL-2005 Shared Task
 - Statistical methods have been well-discussed

Conclusion

Exploiting LCS

- Lexical constraints (syntactic and semantic properties)
 Agentivity, Focus of statement, Linking
- Tool for semantic transfer
- A model for paraphrasing of LVCs in Japanese
 - · Small sets of linguistically explainable rules
 - F-measure: .512 (LM) < .814 (LCS) < .839 (LCS+LM)
 - Error analysis guides further research avenues

Current work

- Restructuring LCS dictionary [Takeuchi et al., 2005]
 - Re-organize the lexical properties to be encoded
 - Enlarge LCS dictionary

Example-based semantic parsing [Hirano et al., 2005]

• By collecting semantically labeled examples

• Technical issue is to reduce human labor for labeling

Enhancing LCS-based paraphrasing model

- Predicate / argument matching algorithms
- Induce by comparing source and target LCSs
 Implementation for other classes of paraphrase

2

Future work

Ultimate goal: cover various paraphrases

- Harmonizing semantics-based paraphrasing with automatic paraphrase acquisition
 - 1. Build semantics-based paraphrase generation models for lexically compositional paraphrases
 - 2. Acquire paraphrases from corpus/Web
 - 3. Distill them into "idiosyncratic paraphrases" by decomposing them using models built in step 1