Enlarging Paraphrase Collections through Generalization and Instantiation

Atsushi Fujita (Future University Hakodate 1) fujita@fun.ac.jp
Pierre Isabelle, Roland Kuhn (National Research Council Canada 1)

Summary

- Paraphrase acquisition
 - Through generalization and instantiation
 - Using both bilingual and monolingual data
- Resources
 - Corpora (bilingual parallel and monolingual)
 - Tokenizer
 - SMT system
 - Lists of stop words

Bilingual

Parallel

Corpus

Monolingual

Non-parallel

Corpus

(optional) Morphological resources

Translation table

health issue ||| problème de santé
health problem ||| problème de santé
look like ||| ressemble
regional issue ||| problème régional
regional problem ||| problème régional
resemble ||| ressemble

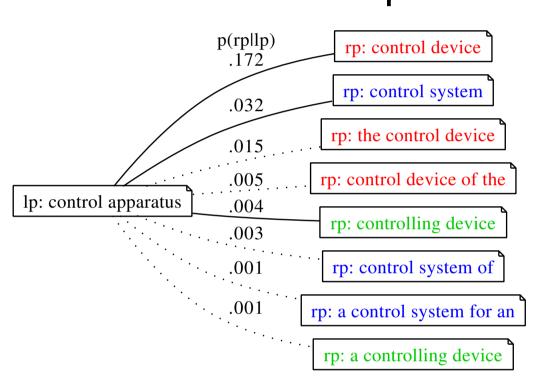
Seed paraphrases (P_{Seed})

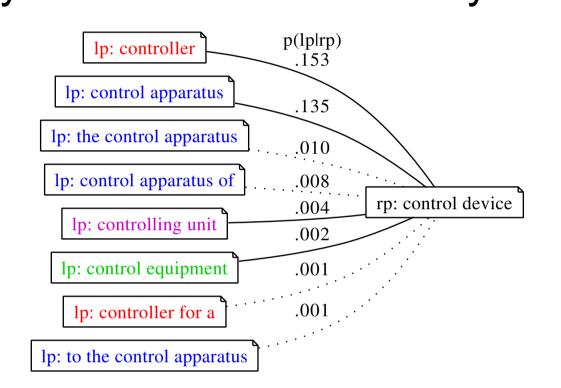
health issue ⇒ health problem
health problem ⇒ health issue
look like ⇒ resemble
regional issue ⇒ regional problem
regional problem ⇒ regional issue
resemble ⇒ look like

Paraphrase patterns

Step 2.

Step 3.


X issue \Rightarrow X problem $X \Rightarrow \{\text{"health", "regional"}\}$ X problem \Rightarrow X issue $X \Rightarrow \{\text{"health", "regional"}\}$

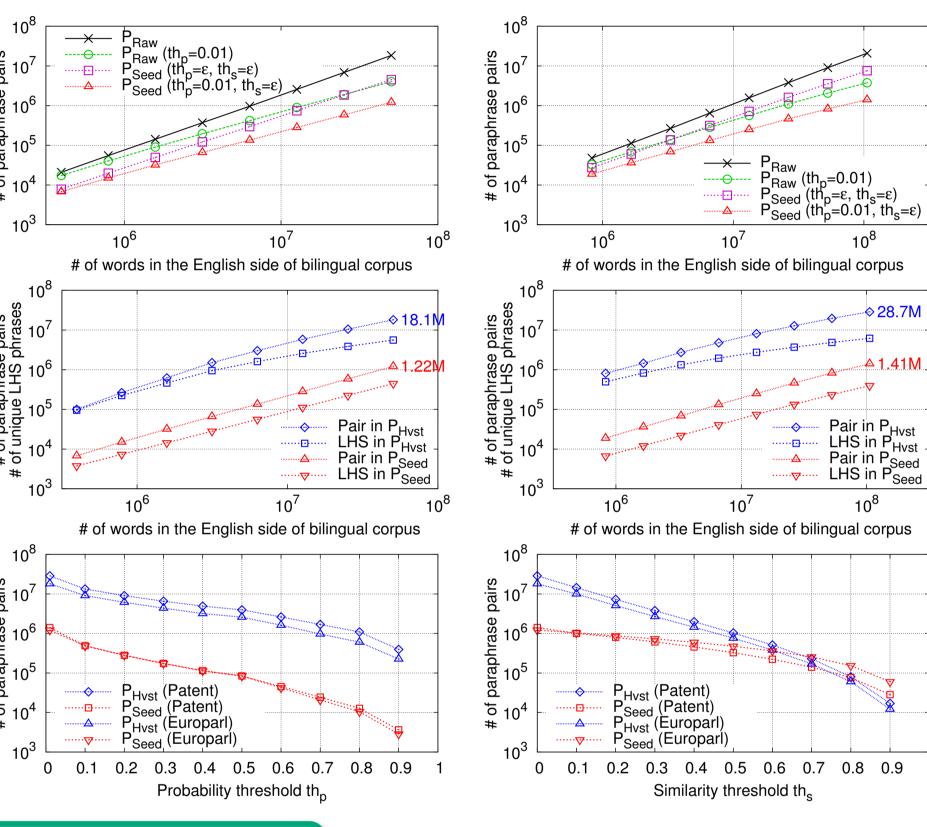

Novel paraphrases (P_{Hvst})

backlog issue ⇒ backlog problem
communal issue ⇒ communal problem
phishing issue ⇒ phishing problem
spatial issue ⇒ spatial problem
unrelated issue ⇒ unrelated problem

Step 1. Seed Paraphrase Acquisition

- Pivot-based PA using generic SMT systems
 - e.g., Phrase-based SMT system [Koehn, 03]
 - 1. Clean up phrase table: sig. pruning [Johnson+, 07]
 - 2. Pair phrases that get translated to the same phrases [Bannard and Callison-Burch, 05]
 - 3. Filter paraphrase candidate pairs3a. stop word differences, word super-sequences3b. conditional probability and contextual similarity

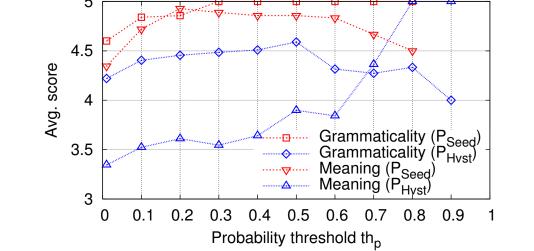
Step 2. Paraphrase Pattern Induction

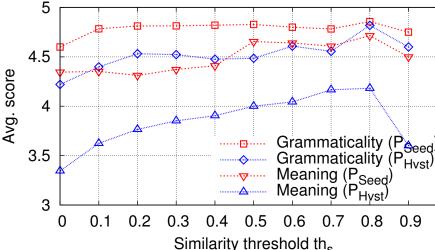

- Identical words of LHS and RHS → Variable slots
 - Ignore morphological variation
 e.g., number (sg./pl.), gender, case, person, tense
- Related work
 - Develop patterns manually [Jacquemin, 99][Fujita+, 07]
 - Add contextual constraints [Callison-Burch, 08][Zhao+, 09]

Step 3. Paraphrase Instance Acquisition

- Harvest novel instances of the patterns
 - 1. Collect expressions that match both sides of the pattern
 - 2. Score each instance by contextual similarity
- Related work
 - Learn class-dependent patterns [De Saeger+, 09;11]
 - (Pattern-dependent) set expansion

Large multiple of # of seeds


- (A) Europarl + GigaFrEn, (B) NTCIR Patent data
 - One-variable patterns and single words
 - High leverage rate (# pair): ≥1580%, ≥2140%
 - Paraphrases for many novel phrases



Good quality

- Human evaluation of phrase substitutions
 - Europarl paraphrases on WMT "newstest" data
 - Comparable to the state-of-the-art

		5-pt		Binary		
	n	G	M	G≥4	M≥3	Both
$P_{{\sf Seed}}$	55	4.60	4.35	.85	.93	.78
$P_{ extit{Hvst}}$	295	4.22	3.35	.74	.67	.55
Total	350	4.28	3.50	.76	.71	.58

Additional statistics Recipe for contextual similarity Ingredients Paraphrase patterns Extract contextual features: adjacent n-grams Coverage depends on corpus/domain 40% cf. Bag-of-words (cheap but noisy) Mostly 1-var patterns cf. Dependency trees (accurate but expensive) Weight and filter features: nothing Aggregate into a single value: cosine of vectors ... There have been many approaches to compute the similarity # of words in the English side of bilingual corpus # of words in the English side of bilingual corpus between words based on their distribution in a corpus. ... Relative yield Leverage rate L1:to L2:approaches:to Small bilingual data P_{Seed} grows slowly L3:many:approaches:to L4:been:many:approaches:to → High leverage \bullet P_{Hvst} depends on patterns R1:between R2:between:words R3:between:words:based:on Examples Europarl, P_{Seed} multi-lateral ⇒ multilateral i would like to start by congratulating ⇒ let me first of all congratulate transitional {process, year} \Rightarrow {process, year} of transition Phrases tend to be short in the course of the last few {months} ⇒ during recent {months} Our filters tend to discard long phrases transitional {task, strategy, phase, costs, ...} Europarl, P_{Hvst} ⇒ {task, strategy, phase, costs, ...} of transition Setting: 1-var patterns & single-word fillers in the course of the last few {weeks, years, decades} ⇒ during recent {weeks, years, decades} Europarl, Ttable Patent, Ttable Patent, P_{Seed} overall structure ⇒ entire configuration in accordance with the structure mentioned above ⇒ due to such a constitution (bypass, chip) condensers ⇒ (bypass, chip) capacitors will be described with reference to {drawings} ⇒ is explained based on the {drawings} {layer, ceramic, ferroelectric, solid, ...} condensers Patent, P_{Hvst} ⇒ {layer, ceramic, ferroelectric, solid, ...} capacitors Length of source language phrase Length of source language phrase will be described with reference to {embodiments} Europarl, P_{Seed} Patent, P_{Seed} ⇒ is explained based on the {embodiments} Alternative for seed paraphrases \blacksquare Any high-prec. set can be used as P_{Seed} • e.g., Multiple definition sentences [Hashimoto+, 11] Length of LHS phrase Length of LHS phrase ... Osteoporosis is a disease that decreases the quantity of bone Europarl, P_{Hvst} Patent, P_{Hvst} and makes bones fragile ... Osteoporosis is a disease that reduces bone mass and increases the risk of bone fracture. ... decreases the quantity of bone ⇒ reduces bone mass makes bones fragile ⇒ increases the risk of bone fracture decreases the quantity of {body, tissue, fat, gas, tumor, muscle, ...} ⇒ reduces {body, tissue, fat, gas, tumor, muscle, ...} mass

Human evaluation: details

- Show 5 alternatives at the same time
- To make results more consistent
- To reduce the human labor
- "Grammaticality" and "Meaning equiv."
 - 5-pt scales and binary prec. [Callison-Burch, 08]
 - [Callison-Burch, 08]
 - Europarl (10 langs-En) + CCG + LM
 - WMT 2007 "newstest" data
 - Binary prec.: .68 for G, .62 for M, .55 for both
 - Ours (total): .76 for G, .71 for M, .58 for both
 - [Chan+, 11]
 - Europarl (10 langs-En) + CCG + Google N-gram
 - Europarl (i.e., closed)
 - Score for 1-best: 4.2 pts for G and 3.7 pts for M
 - Ours (1-best): 4.57 pts for G and 3.96 pts for M

Limitations

- Our method (current version)
 - Does not cover totally different expressions
- Type-based approaches
 - Do not properly deal with polysemy
 - Tend to miss rare expressions
- Corpus-based approaches
 - Do not acquire expressions that do not appear

Future work

- In-depth analyses of the proposed method
 - Similarity metrics
 - Paraphrase patterns with more than one variable
 - Size & type of monolingual corpora
- Sophisticated paraphrase patterns
 - Hierarchical pattern induction
 - Deeper level of lexical correspondences
- Use for NLP applications