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 Focusing on Massively Multiplayer Online RPG 
  Thousands of players co-exist in one virtual “world” 

  cf. millions of registered players 
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 To facilitate further growth 
  Effect of features 

  Extended game fields, one-shot events 
  Influential players 

  Mentoring, intermediation, trades 

 To maintain the order of the virtual world 
  Harassments between players 

  Player killing, occupation of specific locations 
  Causes that lead unfairness and crisis of virtual economy 

  Real Money Trading, use of bots, cheat 
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 Real money ⇔ Virtual properties 
  Currency, items, status, functions, avatars, etc. 
  Observed in other online services, e.g., SNS, auction 

 Two opposing attitudes (sometimes ambivalent) 
  Positive: Means of augmenting the real world 

  e.g., Second Life 
  Negative: Source of serious problems 

  e.g., Most MMORPGs in Japan 
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 Automatic detection of RMTers 
  Actual log data is available 

  Now with TECMO KOEI GAMES CO., LTD. 
  Prefer title independent features 

  Operators want no arms race 
  Desire un-cheatable features 

  Operators’ verification is indispensable 
  To avoid ruling out honest players 
  The amount of human resource depends on situation 

  Title (scale, seriousness) and budget for operation 
  Prefer unsupervised or semi-supervised methods 
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Outline 
1.  Introduction 
2.  Approach 
3.  Procedure 
4.  Experiment 
5.  Conclusion 



 Classify each character into RMTer or non-RMTer 
  Supervised machine learning [Ahmad+, 09] 

  Naïve Bayes, k-NN, AdaBoost, etc. 
  Various features (incl. those specific to the title) 

  Not flexible: Too much/less positive class 
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 Sort characters according to their suspiciousness 
  Using cumulative features [Itsuki+, 10] 

  Handled currency 
  Volume of actions 
  Activity hours 

  Not thoroughly studied 
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Ranking 

working hard to earn virtual currency 

dealing with enormous virtual currency 

1st 2nd 3rd 4th 5th 6th 7th 



 Connection between pairs of characters 
  Extremely low exchange rate, e.g., full of wallet = 

  Division of RMT labor & frequent trade 
  Infrastructure for trading  log data are available 

 Volume of individual trade 
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 RMTers and their trading partners in one timeframe 
  Division of labor of RMTers 

  Typical roles 
  Seller 
  Earner 
  Collector 

  Tight connection 
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Raw log data 

Step 2. 
Ranking characters


1st 2nd 3rd 4th 5th 6th 7th 8th 

Step 1. 
Extracting communities 
from trading network




 Graph partitioning / graph clustering 
  Node: Character 
  Edge: Trade between two characters 
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 Modularity [Newman+, 04] 

  　 
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Many edges in each 
community  Large Q


Expected value of link ratio: 
to avoid a trivial solution


E:  Set of all edges in the network 
Ei:  Set of edges within ith community 
Ai: 
Set of edges connecting to a node in ith community 



 Finding a partitioning that maximizes Q: NP-hard 
 A bottom-up greedy algorithm [Clauset+, 04] 

  1. Regard each node as a community 
    and calculate ΔQ for each connected community pair 

  2. Merge two communities whose ΔQ is largest (and >0) 
  3. Update ΔQ for the merged communities 
  4. Repeat steps 2 & 3 while Q gains 
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 Frequent and/or large-scale trades  RMT 
1. Ranking communities 

  In-community trades 
2. Ranking characters 

in each community 
  Trades of 

individual character 
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 “Uncharted Waters Online” 
  Exploration, naval battle and 

trading in mid-ages 
  RMT is prevalent 

 4 timeframes (15～23 days, no overlap) 
  RMTers are identified (& banned) manually 

  29～130 (<1%) within 15,249～18,745 characters 
  Actual action log data in the same period 

  300～480 million records 
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  Obs. 
  Half of all characters traded something 
  1/3 of all characters traded virtual currency 
  Most of RMTers traded virtual currency 

  Only 1 exception in period D 
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  Target characters and weight of trade 
  All traders 
  Currency traders 

  Obs. 
  Weights of trades / focusing on currency  fine-grained 
  RMTers  only a few communities (1-8)  
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ct: # of times
cb: binary
 cv: volume

tt: # of times
tb: binary




 Available human resource is unknown 
  It varies depending on the situation 

 Two measures 
  Balance between Recall and Precision 

  Recall (R): how exhaustively RMTers are identified 
  Precision (P): how correctly system identifies RMTers 

  Avg. Precision at various recall 
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1 RMTer is found 
2 RMTers are found 
3 RMTers are found 
... 
All RMTers are found 



 Representation of trading network 
  All traders 
  Currency traders 

 Measure for in-community trades 
  tt: # of trade transactions 
  ct: # of currency transactions 
  cv: Total volume of traded currency 

 Measure for trades of individual character 
  tt: # of trade transactions 
  ct: # of currency transactions 
  cv: Total volume of traded currency 
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ct: # of times
cb: binary
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tb: binary




 45 combinations  10 
  Representation of trading network (5) 

  Different network achieved the best result in different period 
  Measure for in-community trades (3  1) 

  Volume of traded currency (cv) > # of transactions (tt, ct) 
  Measure for trades of individual character (3  2) 

  Traded currency (ct, cv) > All trade (tt) 

  Implications 
  Large amount of currency is exchanged for RMT 

  RMTers dealt with more than 1/3 of total currency trades 
  Virtual currency is popular in RMT 

  Buyers want virtual currency 
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 Sort characters based on handled currency (cv) 
 Two supervised methods (w/o constants) 

  Naïve Bayes 
  with multinomial distribution [McCallum+, 98] 

  Support Vector Machines [Vapnik, 99] 
  with linear kernel (SVMlight is used) 

  Feature: all of 338 types of actions 
  trade, attack to other player, find an item, invest for a ship 26 

{+1: RMTer, -1: non-RMTer} 



 Several versions beat all the baselines 
  But nothing significantly wins in all periods 
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 Significant improvement  
  Both on R-P curves and Avg. Prec. 
  Most RMTers  a single, small, and top-rank community 

  Period A: 29 RMTers  28 + 1 
  Period B: 52 RMTers  50 + 1 + 1 

  Some are still difficult to detect 
29 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

o
n

Recall

Win
Lose
Best Proposed (.764)
Best BL (.356)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

o
n

Recall

Win
Lose
Best Proposed (.900)
Best BL (.567)

Period A Period B 



 Weak for plural RMTer communities 
  Period C: 106 RMTers  53 + 33 + 19 + 1 
  Period D: 130 RMTers  80 + 32 + 14 + 2 + 1 + 1 

 Need a more intelligent ranking 
  e.g., Combination of ranks (community, character) 
  e.g., Re-ranking based on operators’ judge 
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 Detection of RMTers in MMORPG 
  As a ranking problem 
  Wholesale arrest thru capturing communities 

  Low exchange rate  division of labor & frequent trade 
  Evaluation using actual log data 

  Better performance than separately assessing each char. 
  w/ a room of further improvement 
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 Technical aspect 
  Further investigation into trading network 

  Mixture models [Newman+, 07] 
  Augmentation with other components [Ahmad+, 11] 

  Apply state-of-the-art machine learning techniques 

 Evaluation 
  Is arms race really overcome? 

  e.g., Robustness against disposal use of characters 
  Application to other MMORPGs 
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