< AIIDE 2011, Oct. 14th, 2011 >

Detecting Real Money Traders in MMORPG by Using Trading Network

Atsushi FUJITA Hiroshi ITSUKI Hitoshi MATSUBARA

Future University Hakodate, JAPAN *fujita@fun.ac.jp*

Help the online game operators

Focusing on Massively Multiplayer Online RPG

- Thousands of players co-exist in one virtual "world"
 - cf. millions of registered players

Operators' issue: Grasp the virtual world

To facilitate further growth

- Effect of features
 - Extended game fields, one-shot events
- Influential players
 - Mentoring, intermediation, trades

To maintain the order of the virtual world

- Harassments between players
 - Player killing, occupation of specific locations
- Causes that lead unfairness and crisis of virtual economy
 - Real Money Trading, use of bots, cheat

RMT: Real Money Trading

□ Real money ⇔ Virtual properties

- Currency, items, status, functions, avatars, etc.
- Observed in other online services, e.g., SNS, auction

Two opposing attitudes (sometimes ambivalent)
 o Positive: Means of augmenting the real world
 • e.g., Second Life

- Negative: Source of serious problems
 - e.g., Most MMORPGs in Japan

Task & given situation

Automatic detection of RMTers

- Actual log data is available
 - Now with TECMO KOEI GAMES CO., LTD.
 - Prefer title independent features
- Operators want no arms race
 - Desire un-cheatable features
- Operators' verification is indispensable
 - To avoid ruling out honest players
 - The amount of human resource depends on situation
 - Title (scale, seriousness) and budget for operation
 - Prefer unsupervised or semi-supervised methods

Outline

- 1. Introduction
- 2. <u>Approach</u>
- 3. Procedure
- 4. Experiment
- 5. Conclusion

As a binary classification

Classify each character into RMTer or non-RMTer

- Supervised machine learning [Ahmad+, 09]
 - Naïve Bayes, k-NN, AdaBoost, etc.
 - Various features (incl. those specific to the title)
- Not flexible: Too much/less positive class

Positive

Negative

As a ranking problem

Sort characters according to their suspiciousness

- Using cumulative features [Itsuki+, 10]
 - Handled currency - dealing with enormous virtual currency

working hard to earn virtual currency

- Volume of actions
- Activity hours
- Not thoroughly studied

Ranking characters by using trading network

Connection between pairs of characters

Extremely low exchange rate, e.g., full of wallet =

- Division of RMT labor & frequent trade
- Infrastructure for trading \rightarrow log data are available
- Volume of individual trade

Trading sub-network (from our data)

RMTers and their trading partners in one timeframe

- Division of labor of RMTers
 - Typical roles
 - Seller
 - Earner
 - Collector
- Tight connection

Outline

- 1. Introduction
- 2. Approach
- 3. <u>Procedure</u>
- 4. Experiment
- 5. Conclusion

Step 1. Community extraction

Graph partitioning / graph clustering

- Node: Character
- Edge: Trade between two characters

Which division is best?

Quality of a given division of network

Modularity [Newman+, 04]

- *E*: Set of all edges in the network
- E_i : Set of edges within i^{th} community
- A_i : Set of edges connecting to a node in i^{th} community

Community extraction algorithm

 \Box Finding a partitioning that maximizes *Q*: NP-hard

- □ A bottom-up greedy algorithm [Clauset+, 04]
 - 1. Regard each node as a community and calculate ΔQ for each connected community pair
 - 2. Merge two communities whose ΔQ is largest (and >0)
 - 3. Update ΔQ for the merged communities
 - 4. Repeat steps 2 & 3 while Q gains

Step 2. Ranking characters

\Box Frequent and/or large-scale trades \rightarrow RMT

- 1. Ranking communities
 - In-community trades
- 2. Ranking characters in each community
 - Trades of individual character

Outline

- 1. Introduction
- 2. Approach
- 3. Procedure
- 4. Experiment
- 5. Conclusion

Application to a real MMORPG

"Uncharted Waters Online"

- Exploration, naval battle and trading in mid-ages
- RMT is prevalent

(C) 2005-2011 TECMO KOEI GAMES CO., LTD. All rights reserved.

- □ 4 timeframes (15~23 days, no overlap)
 - RMTers are identified (& banned) manually
 - ◆ 29~130 (<1%) within 15,249~18,745 characters
 - Actual action log data in the same period
 - ♦ 300~480 million records

Traders and RMTers

- o Obs.
 - Half of all characters traded something
 - 1/3 of all characters traded virtual currency
 - Most of RMTers traded virtual currency
 - Only 1 exception in period D

of extracted communities

- o Obs.
 - ${\scriptstyle \bullet}$ Weights of trades / focusing on currency ${\rightarrow}$ fine-grained
 - RMTers \rightarrow only a few communities (1-8)

Evaluation metrics for RMTer detection

Available human resource is unknown

• It varies depending on the situation

Two measures

- Balance between Recall and Precision
 - Recall (R): how exhaustively RMTers are identified
 - Precision (P): how correctly system identifies RMTers

Avg. Precision at various recall

RMTer is found
 RMTers are found
 RMTers are found

All RMTers are found

Parameter selection of proposed method (1/2)

Representation of trading network

- All traders tb: binary tt: # of times
- Currency traders cb: binary ct: # of times
- Measure for in-community trades
 - tt: # of trade transactions
 - ct: # of currency transactions
 - cv: Total volume of traded currency
- Measure for trades of individual character
 - tt: # of trade transactions
 - o ct: # of currency transactions
 - cv: Total volume of traded currency

cv: volume

Parameter selection of proposed method (2/2)

□ 45 combinations \rightarrow 10

- Representation of trading network (5)
 - Different network achieved the best result in different period
- Measure for in-community trades $(3 \rightarrow 1)$
 - Volume of traded currency (cv) > # of transactions (tt, ct)
- Measure for trades of individual character (3 \rightarrow 2)
 - Traded currency (ct, cv) > All trade (tt)

Implications

- Large amount of currency is exchanged for RMT
 - RMTers dealt with more than 1/3 of total currency trades
- Virtual currency is popular in RMT
 - Buyers want virtual currency

Baselines: direct assessment of each char.

Sort characters based on handled currency (cv)

Two supervised methods (w/o constants)

- Naïve Bayes
 - with multinomial distribution [McCallum+, 98]

$$Score(c) = \sum_{a \in A(c)} freq(a, c) \log \frac{P(a|\text{RMTer})}{P(a|\text{non-RMTer})}$$

- Support Vector Machines [Vapnik, 99]
 - with linear kernel (SVM^{light} is used)

$$Score(c) = \sum_{x_i \in \mathbf{X}} y_i \alpha_i K(x_i, c)$$
{+1: RMTer, -1: non-RMTer}

- Feature: all of 338 types of actions
 - trade, attack to other player, find an item, invest for a ship 26

Average Precision

Several versions beat all the baselines

• But nothing significantly wins in all periods

		1			
Model	Target char. set	Period A	Period B	Period C	Period D
		N = 29	N = 52	N = 106	N = 130
cv	Currency traders	0.320	0.440	0.484	*0.466
MNB	All chars	0.239	0.305	0.342	0.357
	Traders	0.273	0.367	0.381	0.416
	Currency traders	0.336	0.391	0.420	*0.469
SVMs	All chars	0.340	0.198	0.438	0.517
	Traders	0.310	0.567	0.408	0.553
	Currency traders	0.356	0.554	0.421	*0.599
Proposed	tb.cv.ct	0.385	<u>0.900</u>	0.499	0.404
	tb.cv.cv	0.393	0.860	0.503	0.388
	tt.cv.ct	0.328	0.882	0.459	0.648
	tt.cv.cv	0.362	0.837	0.448	0.624
	cb.cv.ct	0.167	0.883	0.524	*0.570
	cb.cv.cv	0.179	0.832	0.510	*0.554
	ct.cv.ct	0.764	0.626	0.515	*0.557
	ct.cv.cv	0.756	0.606	0.498	*0.540
	cv.cv.ct	0.522	0.573	0.513	*0.547
	cv.cv.cv	0.547	0.564	0.498	*0.529

27

- Significant improvement
 - Both on R-P curves and Avg. Prec.
 - Most RMTers \rightarrow a single, small, and top-rank community
 - Period A: 29 RMTers \rightarrow 28 + 1
 - ◆ Period B: 52 RMTers → 50 + 1 + 1
 - Some are still difficult to detect

Relatively unsuccessful cases

Weak for plural RMTer communities

- Period C: 106 RMTers → 53 + 33 + 19 + 1
- o Period D: 130 RMTers → 80 + 32 + 14 + 2 + 1 + 1

Need a more intelligent ranking

o e.g., Combination of ranks (community, character)

• e.g., Re-ranking based on operators' judge

Conclusion

Detection of RMTers in MMORPG

- As a ranking problem
- Wholesale arrest thru capturing communities
 - Low exchange rate \rightarrow division of labor & frequent trade
- Evaluation using actual log data
 - Better performance than separately assessing each char.
 - w/ a room of further improvement

Future work

Technical aspect

- Further investigation into trading network
 - Mixture models [Newman+, 07]
 - Augmentation with other components [Ahmad+, 11]
- Apply state-of-the-art machine learning techniques

Evaluation

- Is arms race really overcome?
 - e.g., Robustness against disposal use of characters
- Application to other MMORPGs