Word-level Translation Quality Estimation Based on Optimal Transport

Yuto Kuroda¹ Atsushi Fujita² Tomoyuki Kajiwara¹ ¹ Ehime University, Japan ² NICT, Japan AMTA 2024

Introduction

- Translation Quality Estimation (TQE)
 - The task of predicting quality labels or scores for the given translation
 - Sentence-level:
 - Help users determine whether to use an MT output as it is or after post-editing.
 - Word-level (this work):
 - Better guide post-editors in the translation production process, i.e., spotting words that need a revision.

Previous Work [Liu+ 2017; Lee 2020]

• Most work follows a three-step training approach

Step	Data Type	Quality Label	Quantity
Step 0. (Encoder) Pre-training	Monolingual/parallel data	n/a	Very large
Step 1. Pre-training for TQE	TQE data (src, mt, label)	Pseudo	Large
Step 2. Fine-tuning	TQE data (src, mt, label)	Manually determined	Small

- Step 1 plays an important role
 - To overcome the data sparseness issue in Step 2
 - Especially for zero-shot translation directions

Previous Work

Bilingual parallel corpus + MT system + TER toolkit
 → Pseudo-quality label

Problem of Previous Work

- Surface-level differences between independent translations do not necessarily indicate errors.
 - e.g., Synonymous expressions
 - e.g., Interchangeable word orderings

Proposed Method (Overview)

- Determine pseudo-quality labels using Optimal Transport (OT)
 - inspired by its application to monolingual word alignment [Arase+, 2023]

Determining Pseudo-Quality Labels Using Optimal Transport

Proposed Method (Basics of OT)

- OT is an algorithm that identifies the optimal way of converting one distribution into another.
 - Input: Mass of each word (distribution) and Cost for transportation
 - Output: Optimal transport matrix

Proposed Method (Components)

- Mass (weight of tokens): uniform distribution
- Cost: cosine distance between contextual word embeddings

Proposed Method (Formulation of OT)

- Cost Matrix (C): cost for all the pairs of words
- **OT Matrix** (*P*): minimizes the total cost for transportation.

$$P = \underset{P' \in U}{\operatorname{argmin}} \left(\sum_{i,j} C_{i,j} P'_{i,j} - \xi H(P') \right)$$

- $P_{i,j}$: amount of mass to be transferred between each pair of words
- U : a set of candidate matrices that satisfy several conditions
 - We adopt Partial OT [Figalli 2010; Caffarelli and McCann, 2010]
 - $P1_n \leq a$: outflow from each word in the **MT output** must be up to 1/n
 - $P^T \mathbf{1}_m \leq b$: inflow into each word in the **Reference** must be up to 1/m
 - $1_n^T P^T 1_m = \lambda_m$: total transportation is bounded to $\lambda_m \in (0, 1]$
- H(P'): entropy-based regularizer (with a weight ξ) [Arase+ 2023]

Proposed Method (Determining Pseudo-Labels)

Optimal transport matrix → pseudo quality label

- Soft label: Maximum amount of mass transferred from the word in the MT output text to a word in the Reference
- Hard label: "OK" or "BAD" determined by thresholding soft label

Two Conventional Architectures of TQE Models

Experiments

Setting

• Dataset

• Test: MLQE-PE [Fomicheva+ 2022]				MLPE-QE WMT21		
 WMT20 [Specia+ 2020] WMT21 [Specia+ 2021] This talk shows only results for WMT21 Training: MLQE-PE Training data Synthetic TQE data Parallel data for WMT21 TQE Task 2 Hyper-parameters for OT were optimized on MLQE-PE Dev data Much larger than MLQE-PE Train data 		Language pair	Synthetic data	Train	Dev	Test
	Non-zero-shot translation direction	En→De	22,701,552	7,000	1,000	1,000
		En→Zh	16,201,271	7,000	1,000	1,000
		Ro→En	3,027,243	7,000	1,000	1,000
		Et→En	855,680	7,000	1,000	1,000
		Ne→En	166,893	7,000	1,000	1,000
		Si→En	570,770	7,000	1,000	1,000
	zero-shot translation direction	En→Cs				1,000
		En→Ja	—			1,000
		Km→En	—	—	-	990
		Ps→En	_	_		1,000
		Ru→En	—	—	-	1,000

[Fomicheva+ 2022] Marina Fomicheva et al. MLQE-PE: A Multilingual Quality Estimation and Post-Editing Dataset. In Proc. of LREC, 2022.

[Specia+ 2020] Lucia Specia et al. Findings of the WMT 2020 Shared Task on Quality Estimation. In Proc. of WMT, 2020.

[Specia+ 2021] Lucia Specia et al. Findings of the WMT 2021 Shared Task on Quality Estimation. In Proc. of WMT, 2021.

Setting (contd.)

- TQE Models
 - Step 0. (Encoder) Pre-trained Model: InfoXLM_{Large} [Chi+ 2021]
 - Pseudo-supervised models: Do Step 1 only
 - Baseline: TER-based hard labels
 - Proposed: OT-based hard labels
 - Proposed: **OT-based** soft labels
 - Fine-tuned models: Do Step 2 (Steps 1&2 or only Step 2)
 - Baseline (only Step 2): Step 2 with MLQE-PE
 - Baseline (Steps 1&2): Step 1 with TER-based hard labels + Step 2 with MLQE-PE
 - Proposed (Steps 1&2): Step 1 with **OT-based** hard labels + Step 2 with MLQE-PE
 - Proposed (Steps 1&2): Step 1 with **OT-based** soft labels + Step 2 with MLQE-PE
- Evaluation Metric:
 - Matthews correlation coefficient (MCC) [Matthews 1975]

Results (Pseudo-supervised Models)

- The model trained on **OT-based** soft labels outperformed the ones trained on either **TER-based** or **OT-based** hard labels
 - <u>Statistically significant gains</u> over the **TER-based** model (except $Ru \rightarrow En$)

Results (Fine-tuned Models)

• The model pre-trained on **OT-based** soft labels achieved higher MCC than **TER-based** model for 6 out of the 11 test sets

Analyses

Impact of Synthetic Data Quality

- Bilingual parallel corpora may contain noise
 - i.e., sentence pairs that are less likely to be translation
- We investigated the impact of the quality of parallel data as well as the quality of synthetic TQE data
 - Step 1. Computed a similarity score for each sentence pair
 - Cosine similarity between sentence embeddings based on LaBSE [Feng+ 2022]
 - Step 2. Filtered out pairs having a similarity lower than a pre-determined threshold
 - e.g., with a threshold of 0.5, only 60% of Ro→En pairs were retained
 - Step 3. Train models on filtered data

Impact of Synthetic Data Quality (Results)

- Pseudo-supervised models
 - Aggressive filtering of the parallel corpus led to higher MCCs
 → Quality matters
- Fine-tuned models
 - Filtering brought only a small impact

Conclusion

- We proposed to apply OT to determine pseudo-quality labels in synthetic data for word-level TQE
- Experimental results
 - OT-based labels better guide pre-training on a synthetic TQE data and lead to higher MCC in word-level TQE
 - Our method achieved consistently better results for pseudo-supervised settings as well as zero-shot translation directions
- Future work
 - Finer-grained hyper-parameter optimization (e.g., λ_m for each segment)
 - Labeling source words