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Introduction
• Translation Quality Estimation (TQE)

• The task of predicting quality labels or scores for the given translation
• Sentence-level:

• Help users determine whether to use an MT output as it is or after post-editing.
• Word-level (this work):

• Better guide post-editors in the translation production process, 
i.e., spotting words that need a revision.
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MT system

<Source>
私は猫が好きです

<MT output>
I like dogs.

TQE Model

like

OK

I dogs .

BADOK OK



Previous Work [Liu+ 2017; Lee 2020]
• Most work follows a three-step training approach

• Step 1 plays an important role
• To overcome the data sparseness issue in Step 2
• Especially for zero-shot translation directions
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Step Data Type Quality Label Quantity
Step 0. (Encoder) Pre-training Monolingual/parallel data n/a Very large
Step 1. Pre-training for TQE TQE data (src, mt, label) Pseudo Large
Step 2. Fine-tuning TQE data (src, mt, label) Manually determined Small

[Liu+ 2017] Lemao Liu et al. Translation Quality Estimation Using Only Bilingual Corpora. IEEE/ACM TASLP, 2017.
[Lee 2020] Dongjun Lee. Two-Phase Cross-Lingual Language Model Fine-Tuning for Machine Translation Quality Estimation. In Proc. of WMT, 2020.



Previous Work
• Bilingual parallel corpus + MT system + TER toolkit

→ Pseudo-quality label
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Source ReferenceMT output

TER toolkit

Pseudo quality label

MT system

Reference: They finally accomplished their goals .

MT output: Eventually , they achieved their goal .

Quality label: BAD    BAD OK    BAD OK    BAD OK



Problem of Previous Work
• Surface-level differences between independent translations do not 

necessarily indicate errors.
• e.g., Synonymous expressions
• e.g., Interchangeable word orderings
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Reference: They finally accomplished their goals .

MT output: Eventually , they achieved their goal .

Quality label: BAD    BAD OK    BAD OK    BAD OK



Proposed Method (Overview)
• Determine pseudo-quality labels using Optimal Transport (OT)

• inspired by its application to monolingual word alignment [Arase+, 2023]
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Source ReferenceMT output

TER toolkit

Pseudo quality label

MT system

OT

[Arase+ 2023] Yuki Arase et al. Unbalanced Optimal Transport for Unbalanced Word Alignment. In Proc. of ACL, 2023. 



Determining Pseudo-Quality Labels
Using Optimal Transport
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Proposed Method (Basics of OT)
• OT is an algorithm that identifies the optimal way of

converting one distribution into another.
• Input: Mass of each word (distribution) and Cost for transportation
• Output: Optimal transport matrix
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Proposed Method (Components)
• Mass (weight of tokens): uniform distribution
• Cost: cosine distance between contextual word embeddings
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Eventually
1/n

.
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Pre-trained multilingual encoder

Cosine distance
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Source Reference
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MT output
(n words)

[SEP]

[SEP]
Word embedding



Proposed Method (Formulation of OT)
• Cost Matrix (C ): cost for all the pairs of words
• OT Matrix (P ): minimizes the total cost for transportation.

𝑃 = argmin
!!∈ #

)
$,&

𝐶$,&𝑃′$,& − 𝜉𝐻(𝑃')

• 𝑃#,% : amount of mass to be transferred between each pair of words 
• 𝑈 : a set of candidate matrices that satisfy several conditions

• We adopt Partial OT [Figalli 2010; Caffarelli and McCann, 2010]
• 𝑃1! ≤ 𝑎 : outflow from each word in the MT output must be up to 1/n
• 𝑃"1# ≤ 𝑏 : inflow into each word in the Reference must be up to 1/m
• 1!"𝑃"1# = 𝜆# : total transportation is bounded to 𝜆# ∈ (0, 1]

• 𝐻(𝑃&) : entropy-based regularizer (with a weight 𝜉) [Arase+ 2023]
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Proposed Method (Determining Pseudo-Labels)
• Optimal transport matrix → pseudo quality label

• Soft label: Maximum amount of mass transferred
from the word in the MT output text to a word in the Reference
• Hard label: ”OK” or “BAD” determined by thresholding soft label
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They finally accomplishd their goals .

Eventually , they achieved their goal .

0.90 0.70 1.00 0.85 0.95 0.95 0.9

OK OK OK OK OK OK OK

0.20 0.15 0.85 0.13 0.10 0.05

Reference:

MT output:

Soft label:

Hard label:



Two Conventional Architectures of TQE Models
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1.00 0.80 0.92… …

Pseudo-soft labelRegression model Classification model

Pre-trained multilingual encoder

Source MT output

… …

0.91 0.45 0.78… …

Output layer
(𝑊 ∈ ℝ!×𝟏)

[SEP]

OK OK OK… …

Pseudo-hard label

Pre-trained multilingual encoder

Source MT output

… …

OK BAD OK… …

Output layer
(𝑊 ∈ ℝ!×𝟐)

[SEP]

Mean squared error Cross-entropy loss

Common foundation



Experiments
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Setting
• Dataset

• Test: MLQE-PE [Fomicheva+ 2022]
• WMT20 [Specia+ 2020]
• WMT21 [Specia+ 2021]
• This talk shows only results for WMT21

• Training:
• MLQE-PE Training data
• Synthetic TQE data

• Parallel data for WMT21 TQE Task 2
• Hyper-parameters for OT were

optimized on MLQE-PE Dev data
• Much larger than MLQE-PE Train data

14[Fomicheva+ 2022] Marina Fomicheva et al.  MLQE-PE: A Multilingual Quality Estimation and Post-Editing Dataset. In Proc. of LREC, 2022.
[Specia+ 2020] Lucia Specia et al. Findings of the WMT 2020 Shared Task on Quality Estimation. In Proc. of WMT, 2020.
[Specia+ 2021] Lucia Specia et al. Findings of the WMT 2021 Shared Task on Quality Estimation. In Proc. of WMT, 2021.

MLPE-QE WMT21

Language 
pair

Synthetic 
data Train Dev Test

Non-zero-shot
translation 
direction

En→De 22,701,552 7,000 1,000 1,000
En→Zh 16,201,271 7,000 1,000 1,000
Ro→En 3,027,243 7,000 1,000 1,000
Et→En 855,680 7,000 1,000 1,000
Ne→En 166,893 7,000 1,000 1,000
Si→En 570,770 7,000 1,000 1,000

zero-shot
translation 
direction

En→Cs ー ー ー 1,000
En→Ja ー ー ー 1,000

Km→En ー ー ー 990
Ps→En ー ー ー 1,000
Ru→En ー ー ー 1,000



Setting (contd.)
• TQE Models

• Step 0. (Encoder) Pre-trained Model: InfoXLMLarge [Chi+ 2021]
• Pseudo-supervised models: Do Step 1 only

• Baseline: TER-based hard labels
• Proposed: OT-based hard labels
• Proposed: OT-based soft labels

• Fine-tuned models: Do Step 2 (Steps 1&2 or only Step 2)
• Baseline (only Step 2): Step 2 with MLQE-PE
• Baseline (Steps 1&2): Step 1 with TER-based hard labels + Step 2 with MLQE-PE
• Proposed (Steps 1&2): Step 1 with OT-based hard labels + Step 2 with MLQE-PE
• Proposed (Steps 1&2): Step 1 with OT-based soft labels + Step 2 with MLQE-PE

• Evaluation Metric:
• Matthews correlation coefficient (MCC) [Matthews 1975]

15[Chi+ 2021] Zewen Chi et al. InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training. In Proc. of NAACL, 2021.
[Matthews 1975] B.W. Matthews. Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme. Biochimica et Biophysica Acta (BBA), 1975.



Results (Pseudo-supervised Models)
• The model trained on OT-based soft labels outperformed the ones 

trained on either TER-based or OT-based hard labels
• Statistically significant gains over the TER-based model (except Ru→En)
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Results (Fine-tuned Models)
• The model pre-trained on OT-based soft labels achieved higher 

MCC than TER-based model for 6 out of the 11 test sets
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Analyses
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Impact of Synthetic Data Quality
• Bilingual parallel corpora may contain noise

• i.e., sentence pairs that are less likely to be translation
• We investigated the impact of the quality of parallel data as well as 

the quality of synthetic TQE data
• Step 1. Computed a similarity score for

each sentence pair
• Cosine similarity between sentence

embeddings based on LaBSE [Feng+ 2022]
• Step 2. Filtered out pairs having

a similarity lower than
a pre-determined threshold
• e.g., with a threshold of 0.5,

only 60% of Ro→En pairs were retained
• Step 3. Train models on filtered data

19[Feng+ 2022] Feng et al. Language-agnostic BERT Sentence Embedding. In Proc. of ACL, 2022.



Impact of Synthetic Data Quality (Results)
• Pseudo-supervised models

• Aggressive filtering of the parallel 
corpus led to higher MCCs
→ Quality matters

• Fine-tuned models
• Filtering brought only a small 

impact
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Conclusion
• We proposed to apply OT to determine pseudo-quality labels in 

synthetic data for word-level TQE
• Experimental results

• OT-based labels better guide pre-training on a synthetic TQE data and lead 
to higher MCC in word-level TQE
• Our method achieved consistently better results for

pseudo-supervised settings as well as zero-shot translation directions

• Future work
• Finer-grained hyper-parameter optimization (e.g., 𝜆* for each segment)
• Labeling source words
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