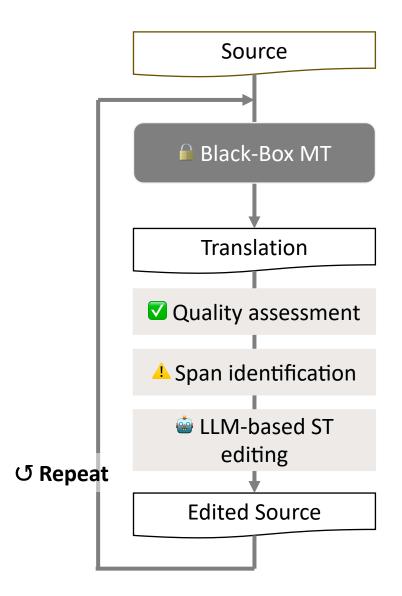
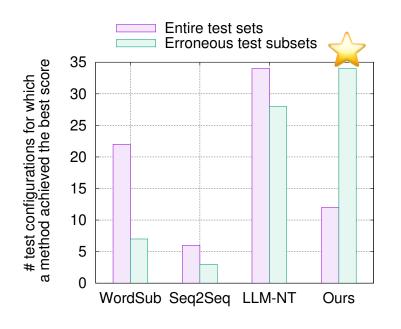

Targeted Source Text Editing for Machine Translation: Exploting Quality Estimators and Large Language Models

Hyuga Koretaka[†], Atsushi Fujita[‡], Tomoyuki Kajiwara[†]

[†]Ehime University, Japan


[‡]National Institute of Information and Communications Technology (NICT), Japan

Source Text Editing for MT


- Editing source texts to be translated
 so that they can be better translated
- An effective way to exploit black-box MT systems
 - Rule-based (Shirai+ 93, Kim+ 94, Yamaguchi+ 98, Shirai+ 98)
 - Seq2seq (Sun+ 10, Nanjo+12, Mirkin+13, Menta+ 20, Koretaka+23)
 - LLM (Ki & Carpuat 25)
- Existing methods remain two challenges
 - Performing only limited types of edit operations
 - With no reference to actual translation errors

Our Method for Targeted Source Text Editing

- Search for the best translation
 - V Evaluating translation quality
 - Segment-level quality estimator (XCOMET-XL, Q)
- Through iteratively generating multiple hypotheses by
 - Identifying source text span
 - Span-level quality estimator (XCOMET-XL, E)
 - Word aligner (OTAlign, A)
 - Editing the identified source span (Miyata & Fujita 17, 21)
 - LLM (e.g., Llama-3.1-70B-Instruct, *P*) as a paraphraser

Our Method Performed Best for Erroneous Test Subsets

- Our targeted method achieved the best COMET score
 in the largest number of test configurations (MT system x test data)
 - Non-targeted counterpart (LLM-NT based on Ki & Carpuat 25) follows it
 - These two were more beneficial than non-LLM-based WordSub and Seq2Seq
- While being developed with Japanese-to-English examples,
 our method also worked well for English-to-Japanese tasks
 - {Japanese, English}-to-Chinese did not always benefit
 - Better segment-level QE will minimize the risk of quality deterioration