
• Edi$ng source texts so that they can be be4er translated by MT
• An effec$ve way for exploi$ng black-box MT systems
• Orthogonal to other strategies
• e.g., system combina$on, automa$c post-edi$ng

• Findings in manual inves$ga$ons of
“targeted source text edi$ng” (Miyata & Fujita, 2017, 2021)
• Poten$al improvement:

88%-100% segments were eventually translated w/o any error.
• Diverse linguis$c opera$ons:

50+ types ranging from syntac$c/phrasal alterna$ons
to symbol subs$tu$ons/normaliza$ons.

• Exis$ng automa$c “pre-edi$ng” methods are
• performing limited types of edit opera$ons
• with no reference to actual transla$on errors
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Be4er segment-level QE will 
minimize the risk of quality 

deteriora$on

1. Source Text Editing for MT 2. Proposed Method

3. Evaluation & Results 4. Analyses

Acks & Contact

• 74 test configura$ons
• 8 MT systems
• 4 NMT: NLLB-3.3B (NLLB Team, 2022),

3 variants pre-trained on JParaCrawl (Morishita et al., 2022)
• 4 LLM-based: Llama-3.1-70B-Instruct (Gra4afiori et al., 2024),

Llama-3.1-Swallow-70B-Instruct-v0.1 (Fujii et al., 2024)
• with RAG based on either BM25 or LaBSE+Faiss

• 10 datasets (see [a] to [j] on the right panel à)
• Covering Japanese (Ja), English (En), and Chinese (Zh)
• We focus on erroneous test subsets: sets of source segments

for which each MT system leads to transla$on errors
• 5 methods compared
• Baseline: no edits
• Word-Sub: Word substa$on (Koretaka et al., 2023)
• Seq2Seq-B: Sequence-to-sequence (Koretaka et al., 2023)
• LLM-NT: Itera$ve version of Ki & Carpuat (2025)
• Ours: Our proposed method

• Evalua$on metric: COMET (wmt22-comet-da)

• Our method a4empts to reduce transla$on errors
caused by a given transla$on system (T), relying on
• Segment-level quality es$mator

(XCOMET-XL, Q) to
✅ search for the best transla$on
(as in Ki & Carpuat, 2025)

• Span-level quality es$mator
(XCOMET-XL, E) and
word aligner (OTAlign, A) to
⚠ determine the source span
to be edited

• Large language model (LLM, P) to
🤖 flexibly and accurately edit
the iden$fied source text span

When transla$ng erroneous test subsets,
our targeted method performed be4er

than non-targeted counterpart (LLM-NT),

• Our method and erroneous test subsets

Gain depends on datasets:
[a][d][e] were difficult to improve

Naively translated English templates 
worked well for Enà* tasks ([f] to [j])

First itera$on focused on the 
severest error and led to the 

biggest jump

The two sig. worse configura$ons
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[b] Ja->En, WMT23
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[c] Ja->En, MTNT19
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[d] Ja->En, KFTT
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[f] En->Ja, ALT
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[g] En->Ja, WMT23
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[h] En->Ja, MTNT19
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[i] En->Ja, IWSLT
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[j] En->Zh, IWSLT
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