Ja to En/Zh/Ko Datasets for Translation Quality Estimation and Automatic Post-Editing

Atsushi Fujita Eiichiro Sumita
ASTREC, NICT, Japan
firstname.lastname@nict.go.jp
NICT QE/APE Dataset (google it!)

- **Multilingual parallel corpus**
 - Japanese (Ja) → English (En), Chinese (Zh), Korean (Ko)
 - Spoken language: travel (8,783 segs), hospital (1,676 segs)
 - 5-tuples for each target language
 - **hyp**: generated by phrase-based SMT systems
 - **ref, pe, and grade**: manually created

<table>
<thead>
<tr>
<th>Source segment in Ja (src)</th>
<th>片道だけで買えますか。</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human translation (ref)</td>
<td>May I get it for one way?</td>
</tr>
<tr>
<td>MT output (hyp)</td>
<td>Can I buy just one way?</td>
</tr>
<tr>
<td>Manually post-edited hyp (pe)</td>
<td>Can I just buy a one way ticket?</td>
</tr>
<tr>
<td>Quality grade of hyp (grade)</td>
<td>B ∈ {S, A, B, C, D}</td>
</tr>
</tbody>
</table>
Background
Human-machine collaboration for translation

A spectrum of translation methods [Hutchins+, 1992]

- Human translation
- Machine-aided Human translation
- Human-aided MT
- Fully automatic MT

Questions

- (a) How often only human can translate?
- (b)(c) How to collaborate?
- (d) What is a realistic goal?
 - “Fully automatic MT is not achievable” [Bar-Hillel, 51]

The word “translation” consists of 11 letters.
Prevalent approaches: Post-Editing

- Post-editing MT outputs (PEMT)
 - Standard in industries in Europe [ISO18587, 17]

- Automatic PE (APE)
 - Trainable with \((\text{src}, \text{hyp}, \text{pe})\) triplets [Allen+, 00]
Prevalent approaches: Quality Estimation

- **Quality Estimation (QE)** [Blatz+, 04][Specia+, 10]
 - For the users (!= confidence score of MT systems)
 - Word-level QE
 - e.g., visualization of unreliable parts [Bach+, 11]

<table>
<thead>
<tr>
<th>Source</th>
<th>Human correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>أنت مختلف تماماً عن زيد وعمرو فلا تحشر نفسك في سرداد التقليد والمحاكاة والذوبان</td>
<td>you are quite different from zaid amr, so do not cram yourself in the tunnel of simulation, imitation and assimilation.</td>
</tr>
<tr>
<td>MT output</td>
<td>We predict and visualize</td>
</tr>
<tr>
<td>you totally different from zaid amr, and not to deprive yourself in a basement of imitation and assimilation.</td>
<td>you totally different from zaid amr, and not to deprive yourself in a basement of imitation and assimilation.</td>
</tr>
</tbody>
</table>

- Sentence-level QE
 - e.g., whether **hyp** can be directly delivered [Soricut+, 10]
 - e.g., routing according to the expected PE labor [Specia, 11]

As is
- Post-edit
- Human translation

Figure 7: MT errors visualization based on confidence scores.

Acknowledgements

We would like to thank anonymous reviewers, Qin Gao, IBM machine translation team for their supports. Also, we would like to thank Christoph Tillmann and the MTSummit-XII Association for Machine Translation.
Limitations of existing datasets

- Only for European languages
 - Those with 10k+ segments

<table>
<thead>
<tr>
<th>Prior art</th>
<th>Translation direction</th>
<th>Domain</th>
<th>MT system</th>
<th># of segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Potet+, 12]</td>
<td>Fr → En</td>
<td>news</td>
<td>SMT</td>
<td>10,881 0 1,500</td>
</tr>
<tr>
<td>[Bojar+, 15]</td>
<td>En → Es</td>
<td>news</td>
<td>SMT</td>
<td>11,271 1,000 1,817</td>
</tr>
<tr>
<td>[Bojar+, 16]</td>
<td>En → De</td>
<td>IT</td>
<td>SMT</td>
<td>12,000 1,000 2,000</td>
</tr>
<tr>
<td>[Bojar+, 17]</td>
<td>En → De</td>
<td>IT</td>
<td>SMT</td>
<td>23,000 1,000 2,000</td>
</tr>
<tr>
<td></td>
<td>De → En</td>
<td>pharmaceutical</td>
<td>SMT</td>
<td>25,000 1,000 2,000</td>
</tr>
</tbody>
</table>

- Only PE-based QE
 - Word-level QE: OK/BAD tags generated from \((\text{hyp}, \text{pe})\) pairs
 - Sentence-level QE: HTER computed from \((\text{hyp}, \text{pe})\) pairs

- Only written texts

Can we rely on HTER to decide which \text{hyp} to be delivered?
Our 6-step procedure for corpus construction

- Cover Asian languages
- Cover spoken language
- Conduct also manual grading
Steps 1 & 2: Creation of parallel corpus
Step 1: Collecting Japanese utterances

- Spoken language in two domains
 - travel: transcribed utterances
 - Log data of our speech translation app, VoiceTral
 - hospital: written utterances
 - Manually created role-play dialogs

- De-duplication & manual cleaning
 - Non-understandable ones
 - Ungrammatical ones
 - Inappropriate ones wrt. social standards
Step 2: Manual translation

- Native speakers of each target language

- Instructions
 - Translate each segment
 - Assuming reasonable context
 - But without adding too much information
 - Only one ref, even if the src has more than one interpretation
 - e.g., filling zero-anaphor (he/she)
 - e.g., specifying sg./pl. (book/books)

 src หยิบ แค่ เดิน บ่ม มี หรือ
 (one way) (only) (ACC) (buy) (modesty) (INT) .

 ref May I get it for one way?
Steps 3 & 4: Creation of QE/APE dataset
Steps 3 & 4: MT and post-editing

- **Step 3**: $src \rightarrow hyp$ using phrase-based SMT systems

<table>
<thead>
<tr>
<th>Translation direction</th>
<th>MT system</th>
<th>Model</th>
<th># of sentences for training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja \rightarrow En</td>
<td>SMT</td>
<td>2013/Oct.</td>
<td>736k</td>
</tr>
<tr>
<td>Ja \rightarrow Zh</td>
<td>SMT</td>
<td>2016/Sep.</td>
<td>1.44M</td>
</tr>
<tr>
<td>Ja \rightarrow Ko</td>
<td>SMT</td>
<td>2016/Sep.</td>
<td>1.40M</td>
</tr>
</tbody>
</table>

- **Step 4**: src, hyp, and $ref \rightarrow pe$

 - Correcting hyp with minimum number of edits [Snover+, 06]
 - Deletion of a word (Del)
 - Insertion of a word (Ins)
 - Substitution of a word (Sub)
 - Shift of a word or a phrase (Shift)

 - A lenient criterion: $\text{TER}(hyp \rightarrow pe) \leq \text{TER}(hyp \rightarrow ref)$
 - Prohibited: copying ref to pe
Detail of computing TER

- tercom-0.7.25 w/ OSS tokenizers
 - En: Moses’s tokenizer
 - Zh: Character
 - Ko: MeCab + mecab-ko-dic

- Asymmetric
 - For Step 4: TER(hyp → pe), TER(hyp → ref)
 - For sentence-level QE: TER(pe → hyp) (=HTER)

<table>
<thead>
<tr>
<th>src</th>
<th>あなたは22時までにチェックインする必要があります。</th>
</tr>
</thead>
<tbody>
<tr>
<td>hyp</td>
<td>You should check in by twenty two o'clock .</td>
</tr>
<tr>
<td>pe</td>
<td>You have to check in by 22 00 .</td>
</tr>
</tbody>
</table>

= Sub Del = = = Sub Ins Ins =
Steps 5 & 6: Additional human evaluation
Step 5: Manual grading

Evaluate the quality of hyp wrt. its src
- Optionally referring to ref

5-ary classification [Goto+, 13] rather than scoring
- S: Perfect (native) Correct (goal of PE)
- A: Good
- B: Fair
- C: Acceptable Some errors (need PE)
- D: Incorrect
Definition of acceptable classes

S: Perfect ("AA" in [Goto+, 13])
- Information of the source text has been completely translated. There are no grammatical errors in the target text. Lexical choice and phrasing are natural even from a native speaker point-of-view.

A: Good
- Information of the source text has been completely translated. There are no grammatical errors in the target text, but lexical choice and phrasing are slightly unnatural.
Definition of unacceptable classes

- **B: Fair**
 - There are *some minor errors* in the target text of less important textual information, but the *meaning of the source text can be easily understood*.

- **C: Acceptable**
 - Important parts of the source text are *omitted or incorrectly translated*, but the *meaning of the source text can be easily understood*.

- **D: Incorrect ("F" in [Goto+, 13])**
 - The meaning of the source text is *incomprehensible* from target text.
Step 6: Consistency check

- Resolve the discrepancies
 - If $(\text{grade} \text{ is } \text{“S” or “A”}) \land \land (\text{pe} \neq \text{hyp})$
 → then, retry both grading and post-editing
 - If $(\text{grade} \text{ is } \text{“B” or “C” or “D”}) \land \land (\text{pe} = \text{hyp})$
 → then, retry both grading and post-editing

- Minimality of post-edits is assessed again (if necessary)
 - If $\text{TER}(\text{hyp} \rightarrow \text{pe}) > \text{TER}(\text{hyp} \rightarrow \text{ref})$
 → then, retry post-editing
Analyses of the created datasets
Results of manual grading

Direction and domain

hyp were of very bad quality
Proximity between translations

Observations

- (a) **hyp → ref**: automatic MT evaluation
 - Correlates with the proportion of “S” and “A”
- (b) **hyp → pe**: amounts of post-edits
 - Significantly better than (a), except for Ja→En hospital
- (c) **pe → ref**: unrelated
 - Fallen between (a) and (b), except for Ja→En tasks

e.g., TER scores in the hospital domain

- Ja→En: hyp (a) 75.35, (b) 66.03, (c) 24.69
 - Too bad to perform PE
- Ja→Zh: hyp (a) 48.54, (b) 8.67, (c) 43.78
- Ja→Ko: hyp (a) 32.44, (b) 4.12, (c) 30.00
Distribution of sentence-wise HTER score

- Overall: some level of correlation
- But, lower HTER scores do not mean higher quality
HTER vs. *grade*

Ja->En, hospital

Human judgment for MT output

Critical errors were corrected with small numbers of edits

Too much edits
Ja ➔ En examples with HTER/grade mismatch

- **HTER=0.22 / “D” Drop of negation**
 - *src* 多額の現金は持ってこないでください。
 - *hyp* Please bring a lot of cash.
 - *pe* Please don’t bring a lot of cash.

- **HTER=0.13 / “D” Incorrect reference**
 - *src* 頭が痛くありませんか。
 - *hyp* Do you have pain in my neck?
 - *pe* Do you have pain in your neck?

- **HTER=0.78 / “B” Too much edits**
 - *src* 素晴らしい景色だね
 - *hyp* It’s beautiful scenery.
 - *pe* The scenery’s beautiful, isn’t it?

HTER and grade define different objectives for sentence-level QE
Benchmarking

- How the data resemble WMT?
- Are existing methods useful?
Benchmarking experiments

Tasks

- Word-level QE
- Sentence-level QE: two variants
- Automatic Post-editing (APE)

External resource

- We reluctantly used our in-house parallel corpus
 - Daily life conversations
 - Reasonably large

<table>
<thead>
<tr>
<th>Partition</th>
<th># of sentences</th>
<th># of tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>train</td>
<td>1.57M</td>
<td>20.1M-2.51M</td>
</tr>
<tr>
<td>dev</td>
<td>14k</td>
<td>179k-224k</td>
</tr>
</tbody>
</table>
Word-level QE: Methods

- **Feed-forward NN model** [Kreutzer+, 15]
 - Relying on word alignment and context words in a window

 ![Diagram of feed-forward NN model](image)

 \[\begin{align*}
 y_{i-1} &= \text{You} \\
 y_i &= \text{should} \\
 y_{i+1} &= \text{check} \\
 x_{a(i)-1} &= \text{する} \\
 x_{a(i)} &= \text{必要} \\
 x_{a(i)+1} &= \text{が}
 \end{align*} \]

 - Use of large pseudo training data
 - generated from \((\text{hyp}, \text{ref})\) pairs [Liu+, 17]
Word-level QE: Results

- On F₁ score for BAD tags (F₁-BAD)
- The less the BAD tags were, the lower F₁-BAD was
- Were pseudo training data useful?
 - ✔ Ja → En and Ja → Zh: as in En → Es [Liu+, 17]
 - ✗ Ja → Ko: we have not yet found the reason

![Bar chart showing F₁-BAD for different conditions and languages](chart.png)
Sentence-level QE: Methods

- **Two variant tasks**
 - Prediction of HTER as regression [Bojar+, 14;15;16;17]
 - Binary classification
 - No PE is needed: “S” and “A”
 - PE is needed: “B”, “C”, “D”

- **SVM with heuristic features**
 - **QuEst17**: the 17 MT system-independent features [Specia+, 15]
 - # of tokens, LM prob., Avg. ambiguity based on phrase table, etc.
 - **SntEmb**: distributed representation for each of src & hyp
 - Avg. of 300-dim embeddings of constituent words [Shah+, 16]
Sentence-level QE: Results

- SntEmb improved the performance of QuEst features

- Prediction of HTER
 - No naïve baseline

- Binary classification
 - No WMT counterpart
 - No naïve baseline
 - On F1-mult (F_1-BAD * F_1-OK)
 - Two expected usages
 - To filter out truly BAD hyp
 - To filter truly OK hyp
Conclusion

NICT QE/APE Dataset (google it!)
- Japanese (Ja) \rightarrow English (En), Chinese (Zh), Korean (Ko)
- Spoken language: travel (8,783 segs), hospital (1,676 segs)
- 5-tuples for each target language
 - \textit{hyp}: generated by phrase-based SMT systems
 - \textit{ref}, \textit{pe}, and \textit{grade}: manually created

<table>
<thead>
<tr>
<th>Source segment in Ja (\textit{src})</th>
<th>片道だけで買えますか。</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human translation (\textit{ref})</td>
<td>May I get it for one way?</td>
</tr>
<tr>
<td>MT output (\textit{hyp})</td>
<td>Can I buy just one way?</td>
</tr>
<tr>
<td>Manually post-edited \textit{hyp} (\textit{pe})</td>
<td>Can I just buy a one way ticket?</td>
</tr>
<tr>
<td>Quality grade of \textit{hyp} (\textit{grade})</td>
<td>$B \in {S, A, B, C, D}$</td>
</tr>
</tbody>
</table>
Future work

(ongoing) Creating QE data for NMT outputs
- *grade* only (by Mar. 2018?)
 - PE is more difficult to perform
 - PE costs significantly more

Evaluation of recent NN-based methods
- e.g., Predictor-estimator NN model for QE [Kim+, 17]
- e.g., Multi-source NN-based APE [Junczys-Dowmunt+, 16]

Application to MT-related tasks
- e.g., Enhancing our translation services
- e.g., Filtering automatically harvested parallel sentences

A shared-task in the next WAT?