
Detection of Incorrect Case Assignments
in Paraphrase Generation

Atsushi Fujita, Kentaro Inui, and Yuji Matsumoto

Graduate School of Information Science,
Nara Institute of Science and Technology

{atsush-f,inui,matsu}@is.naist.jp

Abstract. This paper addresses the issue of post-transfer process in paraphras-
ing. Our previous investigation into transfer errors revealed that case assignment
tends to be incorrect, irrespective of the types of transfer in lexical and struc-
tural paraphrasing of Japanese sentences [3]. Motivated by this observation, we
propose an empirical method to detect incorrect case assignments. Our error de-
tection model combines two error detection models that are separately trained on
a large collection of positive examples and a small collection of manually labeled
negative examples. Experimental results show that our combined model signifi-
cantly enhances the baseline model which is trained only on positive examples.
We also propose a selective sampling scheme to reduce the cost of collecting
negative examples, and confirm the effectiveness in the error detection task.

1 Introduction

Recently, automatic paraphrasing has been attracting increasing attention due to its po-
tential in a wide range of natural language processing application [11, 1]. For example,
paraphrasing has been applied to pre-editing and post-editing in machine translation
[14], query expansion for question answering [13], and reading assistance [2, 6].

There are various levels of lexical and structural paraphrasing as the following
examples demonstrate1:

(1) s. He accomplished the mission perfectly.
t. He achieved the mission perfectly.

(2) s. It was a Honda that John sold to Tom.
t. John sold a Honda to Tom.

In automating such paraphrasing, the difficulty of specifying the applicability condi-
tions of each paraphrasing pattern is one of the major problems. For example, it is not
easy to specify under what conditions “accomplish” can be paraphrased into “achieve.”
Paraphrasing patterns with wrong applicability conditions would produce various types
of erroneous paraphrases from input, which we call transfer errors. We thus need to de-
velop a robust method to detect and correct transfer errors in the post-transfer process
by way of a safety net.

1 For each example, ‘s’ denotes an input and ‘t’ denotes its paraphrase. A sentence with the
mark ‘∗’ indicates it is incorrect. Note that our target language is Japanese. English examples
are used here for an explanatory purpose.

556 A. Fujita, K. Inui, and Y. Matsumoto

Our previous investigation revealed that case assignment tends to be a major error
source in paraphrasing of Japanese sentences [3]. Here is an example of incorrect case
assignment: applying the paraphrasing rule “accomplish ⇒ achieve” (cf. (1)) to sen-
tence (3s) generates (3t). But (3t) is incorrect, because the word “achieve” requires the
words, such as “aim,” “record” and “success,” for its direct object.
(3) s. He accomplished the journey in an hour.

t.∗He achieved the journey in an hour.
One may suspect that incorrect case assignment can be detected simply by refer-

ring to a handcrafted case frame dictionary which describes allowable cases and their
selectional restrictions for each verb. However, in existing case frame dictionaries of
Japanese, selectional restrictions are generally specified based on coarse-grained se-
mantic classes of noun. They are therefore not adequate for the purpose of the detection
of incorrect case assignments (the detail will be given in Section 2).

To capture the difference between the usages of near-synonyms, we deal with words
directly instead of relying on their semantic classes. Since a considerably large number
of positive examples, namely, correct examples of case assignments, can be collected
from existing corpora, one can construct a statistical language model and apply it to the
error detection task [9, 7]. In this paper, to enhance such a statistical language model,
we introduce the use of negative examples and address the following issues:
1. Unlike positive examples, negative examples are generally not available. A chal-

lenging issue is therefore how to effectively use a limited number of manually col-
lected negative examples combining with a large number of positive examples.

2. Manual collection of negative examples is costly and time-consuming. Moreover,
any such collection is sparse in the combinatorial space of words. Hence, we need
an effective way to collect negative examples that truly contribute to error detection.

2 Incorrect case assignment
2.1 Characteristics

In [3], we investigated transfer errors in Japanese from two points of view: (i) what types
of errors occur in lexical and structural paraphrasing of Japanese sentences, and (ii)
which of them tend to be serious problem. We implemented about 28,000 paraphrasing
rules2 consisting of various levels of lexical and structural paraphrasing, and analyzed
630 automatically generated sentences. Through the investigation, we observed that
case assignment tended to be incorrect, irrespective of the types of paraphrasing. A
quarter of the paraphrased sentences (162 / 630) involved this type of errors. This ratio
indicated the second most frequent errors3.

Case assignment can be incorrect at three different levels:
(i) Violation of syntactic constraints: Though both of the verbs “tessuru” and “tsuranuku”
have the same meaning “devote”, the paraphrased sentence (4t) is incorrect because
“tsuranuku” cannot take the “ni (dative)” case.

2 http://cl.naist.jp/lab/kura/KuraData/
3 The most dominant type was inappropriate conjugation forms of verbs and adjectives

(303 / 630), which could be easily corrected by changing their conjugation forms. The third
most frequent error was incorrect functional word connections that occurred in 78 sentences.
The other errors occurred in less than 40 sentences.

Detection of Incorrect Case Assignments in Paraphrase Generation 557

(4) s. Team play-ni tessuru.
team play-DAT devote-PRES

He devotes himself to team play.

t.∗Team play-ni tsuranuku.
team play-DAT devote-PRES

(ii) Violation of selectional restrictions: The verb “katameru (strengthen)” requires
a concrete object for its “o (accusative)” case. Since the noun “kontei (basis)” in the
paraphrased sentence (5t) does not satisfy constraint, (5t) becomes incorrect.
(5) s. Building-no kiban-o katameta.

building-GEN foundation-ACC strengthen-PAST

He strengthened the foundation of the building.

t.∗Building-no kontei-o katameta.
building-GEN basis-ACC strengthen-PAST

∗He strengthened the basis of the building.
(iii) Semantic inconsistency between sibling cases: The nouns “hyogen (expressions)”
and “kakuchi (every land)” in the paraphrased sentence (6t) satisfy the semantic con-
straint for “ga (nominative)” and “ni (locative)” cases of the verb “aru (exist),” re-
spectively. Nevertheless, (6t) is incorrect, because of semantic discrepancy between the
nouns of the nominative and locative cases.
(6) s. Nankai-na hyogen-ga zuisho-ni aru.

crabbed-ADJ expressions-NOM many places-LOC exist-PRES

There are crabbed expressions in many places (of the document).

t.∗Nankai-na hyogen-ga kakuchi-ni aru.
crabbed-ADJ expressions-NOM every land-LOC exist-PRES

∗There are crabbed expressions in every land.

2.2 Task setting

Supposing that the case assignments in input sentences into paraphrasing are all cor-
rect, the target of error detection is to detect anomalies yielded in the paraphrased case
structures that consist of a verb, case particles, and case fillers (nouns).

As mentioned in Section 1, existing case frame dictionaries specify selectional re-
strictions relying on a coarse-grained semantic typology. For example, most of the dic-
tionaries do not distinguish two near-synonyms “kiban (foundation)” and “kontei (ba-
sis)”, and classifies them into the same semantic class “basis,” although the difference
between them is crucial in the context of example (5).

Instead, we deal with words directly. Let v, n and c be a verb, a noun and the case
particle which relates n to v, respectively. We decompose the error detection task into
the classification of triplet 〈v, c, n〉 into correct or incorrect. A given paraphrased sen-
tence is judged to be incorrect if and only if any of the triplets included in the sentence
is classified as incorrect. If we deal with 〈v, c1, n1, c2, n2〉 to take into account the as-
sociation between two sibling cases, as in [16], we might be able to detect semantic
inconsistency. However, we have so far examined an error detection model taking only
〈v, c, n〉 into account, because the sibling cases can rarely be semantically inconsistent4

4 According to the analysis in [3], only 8 cases of the 162 incorrect case assignments had se-
mantically inconsistent sibling cases.

558 A. Fujita, K. Inui, and Y. Matsumoto

and building a distribution model of 〈v, c1, n1, c2, n2〉 is likely to cause a data sparse-
ness problem.

3 Error detection models

In generative approaches, such as parsing and statistical machine translation, systems
use statistics to estimate relative likelihood of output candidates. For the error detec-
tion in paraphrasing, however, we need a model for judging the absolute correctness
of output candidates for the following reason. Paraphrasing systems are typically de-
veloped for a particular purpose such as simplifying text and controlling wording. In
such systems, the variety of paraphrasing rules tends to be restricted; so the rule set
may produce no appropriate paraphrase candidate for a given input sentence. An error
detection model therefore needs an ability not only to compare candidates but also to
give up producing output when none of the candidates is correct.

If error detection is defined as a discriminative task, i.e. classifying the candidates
into correct or incorrect, one may want to use both positive and negative examples to
train a classifier. However, any collection of negative examples is likely to be too small
to represent the distribution of the negative class. Thus, it is probably not a good choice
to input them together with a vast amount of positive examples into a single classifier
induction algorithm such as support vector machines. We therefore separately train two
models, the positive model (Pos) and the negative model (Neg), then combine them to
create another model (Com) as shown in Figure 1. Since negative examples have to be
collected by hand, we also investigate the effectiveness of a selective sampling scheme
to reduce human labor.

3.1 Combining separately trained models

Positive model Since a considerably large number of positive examples can be col-
lected from existing corpora using a parser, one can estimate the probability P (〈v, c, n〉)
with reasonable accuracy. On that account, we first construct a baseline model Pos, a
statistical language model trained only on positive examples.

To calculate P (〈v, c, n〉) avoiding the data sparseness problem, one can use Prob-
abilistic Latent Semantic Indexing (PLSI) [4] which bases itself on distributional clus-
tering [12]. PLSI is a maximum likelihood estimation method. Dividing5 〈v, c, n〉 into
〈v, c〉 and n, one can estimate P (〈v, c, n〉) by:

P (〈v, c, n〉) =
∑
z∈Z

P (〈v, c〉|z)P (n|z)P (z),

where Z denotes a set of latent classes of co-occurrence, and probabilistic parameters
P (〈v, c〉|z), P (n|z), and P (z) can be estimated by the EM algorithm.

Given P (〈v, c, n〉), we can use various co-occurrence measures to estimate the like-
lihood of a given pair of 〈v, c〉 and n. Well-known options are P (〈v, c, n〉) (Prob),
mutual information (MI), and the Dice coefficient (Dice).

5 P (〈v, c, n〉) can be represented by the product of P (〈v, c〉) and P (n|〈v, c〉). Both of the
marginal distributions corresponds existing linguistic concept; the former indicates the like-
lihood of a case structure, while the latter does the satisfaction degree of semantic constraint.

Detection of Incorrect Case Assignments in Paraphrase Generation 559

Classifier:
Pos

Classifier:
Neg

<v,c,n>

Score
Neg

Score
Pos

Normalize
function

Normalize
function C

Pos

C
Neg

Score
Com

Linear
combination

Fig. 1. Proposed model.

Negative model Pos might not be able to properly judge the correctness of 〈v, c, n〉 by
setting a simple threshold, particularly in cases where P (〈v, c〉) or P (n) is low. This
defect is expected to be compensated for by the use of negative examples. However, we
cannot incorporate negative examples into the statistical language model directly. We
thus construct a negative model Neg separately from Pos.

One simple way of using negative examples is the k-nearest neighbor (k-NN) method.
Assuming that the distance between an input triplet 〈v, c, n〉 and a labeled negative
example 〈v′, c′, n′〉 depends on both the distance between 〈v, c〉 and 〈v′, c′〉 and the
distance between n and n′, we formulate the following distance function:

Dist(〈v, c, n〉, 〈v′, c′, n′〉) = DS
(
P (Z|n), P (Z|n′)

)
+ DS

(
P (Z|〈v, c〉), P (Z|〈v′, c′〉)

)
.

Here, P (Z|〈v, c〉) and P (Z|n) are the feature vectors for 〈v, c〉 and n. These probability
distributions are obtained through the EM algorithm for Pos, and the function DS de-
notes distributional similarity between two probability distributions. We employ one of
the popular measures of distributional similarity, Jensen-Shannon divergence (DSJS)
[9, 10]. Given the pair of probability distributions q and r, DSJS is given by:

DSJS(q, r) =
1
2

[
D

(
q

∥∥∥ q + r

2

)
+ D

(
r

∥∥∥ q + r

2

)]
,

where the function D is theKullback-Leibler divergence. DSJS is always non-negative,
and DSJS = 0 iff q = r.

Given an input 〈v, c, n〉, Neg outputs the weighted average distance ScoreNeg be-
tween the input and its k nearest neighbors. Formally,

ScoreNeg =
1
k

k∑
i=1

λi Dist (〈v, c, n〉, 〈v′, c′, n′〉i) ,

where λi is the weight for 〈v′, c′, n′〉i, the i -th nearest neighbor, larger value of ScoreNeg

indicates the input is more likely to be correct.

Combined model Given the pair of scores output by Pos and Neg, our error detection
model Com converts them into normalized confidence values CPos and CNeg (0 ≤
CPos, CNeg ≤ 1). Each normalization function can be derived using development data.
Com then outputs the weighted average of CPos and CNeg as the overall score:

ScoreCom = β CPos + (1 − β)CNeg ,

where 0 ≤ β ≤ 1 determines the weights for the models, ScoreCom indicates the
degree of correctness.

560 A. Fujita, K. Inui, and Y. Matsumoto

3.2 Selective sampling of negative examples

We need negative examples that are expected to be useful in improving Neg and Com.
For the current purpose, an example is not useful if it is positive, or if it is similar to any
of the known negative examples. In other words, we prefer negative examples that are
not similar to any existing labeled negative example. We henceforth refer to unlabeled
instances as samples, and labeled ones as examples.

Our strategy for selecting samples can be implemented straightforwardly. We use
Pos to estimate how likely a sample is negative. To compute the similarity between an
unlabeled sample and labeled examples, we useNeg. Let px be the estimated probability
of an unlabeled sample x, and sx (> 0) be the similarity between x and its nearest
negative example. The preference for a given sample x is given by, e.g., Pref(x) =
−sx log(px), which we use in the experiments.

Our selective sampling scheme is summarized as follows:

Step 1. Generate a set of paraphrases by applying paraphrasing rules to sentences sam-
pled from documents in a given target domain.

Step 2. Extract a set of triplets from the set of paraphrases. We call it a sample pool.
Step 3. Sample a small number of triplets at random from the sample pool, and label

them manually. Use only negative samples as the seed of the negative example set.
Step 4. For each sample x in the sample pool, calculate its preference by Pref(x).
Step 5. Select the most preferred sample, and label it manually. If it is negative, add it

into the negative example set.
Step 6. Repeat Steps 4 and 5 until a certain stopping condition is satisfied.

4 Experiments

4.1 Data and evaluation measures

We constructed data for training Pos and Neg in the following way (Also see Figure 2).
During this process, paraphrase candidates were constructed for evaluation as well.

Step 1. 53 million tokens (8.0 million types) of triplets 〈v, c, n〉 were collected from
the parsed6 sentences of newspaper articles7. To handle case alteration properly,
we dealt with active and passive forms of verbs separately.

Step 2. Triplets occurring only once were filtered out. We also restricted c to be the
most frequent seven case particles: “ga (NOM),” “o (ACC),” “ni (DAT),” “de (LOC),”
“e (to),” “kara (from),” and “yori (from / than).” This procedure resulted in 3.1 million
types of triplets consisting of 38,512 types of n and 66,484 of 〈v, c〉.

Step 3. We estimated the probabilistic parameters of PLSI by applying the EM algo-
rithm8 to the data, changing the number of latent classes |Z| from 2 through 1,500.

6 We used the statistical Japanese dependency parser CaboCha [8] for parsing.
http://chasen.naist.jp/˜taku/software/cabocha/

7 Extracts from 9 years of the Mainichi Shinbun and 10 years of the Nihon Keizai Shinbun
consisting of 25,061,504 sentences are used.

8 http://chasen.naist.jp/˜taku/software/plsi/

Detection of Incorrect Case Assignments in Paraphrase Generation 561

Raw corpus Probability
distribution

<v,c,n>
triplets

Classifier:
Pos

Controling lexicon

Parsing

Paraphrase
candidates

Lexical and
structural

paraphrasing

Distributional
clustering

Manual classification

Classifier:
Neg

1

4
2

3

6

5

Input sentences Negative
<v,c,n> s

Fig. 2. Model construction scheme.

Step 4. To develop a negative example set, we excerpted 90,000 sentences from the
newspaper articles used in Step 1, input them into a paraphrasing system for Japanese9,
and obtained 7,167 paraphrase candidates by applying the same paraphrasing rules
that were used for our previous investigation into transfer errors [3].

Step 5. We filtered out the generated candidates that contain no changed case structure
and those that include either v or n with a frequency of less than 2,000 in the
collection given in Step 1. Then, 3,166 candidates remained.

Step 6. Finally, we manually labeled the 3,166 candidates and their triplets. We ob-
tained (i) 2,358 positive and 808 (25.5%) negative candidates10, and (ii) 3,704 types
of triplets consisting of 2,853 positive and 851 negative. The former set was used
for evaluation, while the latter was used for training Neg.
For evaluation, we compare the performance of Pos, Neg, and Com. For each model,

we set a threshold and used it so that a given input was classified as erroneous if and
only if it received a lower score than the threshold. Given such a threshold, recall R
and precision P can be calculated11. While we can estimate the optimal threshold for
each model, in the experiments, we plot recall-precision (R-P) curves by varying the
threshold. To summarize a R-P curve, we use 11-point average precision (11-point
precision, hereafter) where the eleven points are R = 0.0, 0.1, . . . , 1.0. To compare
R-P curves, we conduct Wilcoxon rank-sum test using precision at eleven point above,
assuming p < 0.05 as the significance level.

4.2 Results

Baseline First, to illustrate the complexity of the task, we show the performance of the
baseline models: a dictionary-based model, a word-based naive smoothing model, and
our statistical language model Pos. We regard Pos as a baseline because our concern is
to what extent Pos can be enhanced by introducing Neg and Com. For the case frame
dictionary, we used the largest Japanese case frame dictionary, the NTT Japanese Lexi-
con [5] (Dic), and the Good-Turing estimation (GT) for the naive smoothing model.

As shown in Figure 3, Pos significantly outperforms bothDic andGT. Prob,MI and
Dice with |Z| = 1,000 achieve 65.6%, 69.2% and 67.5% 11-point precision, while Dic
achieves 41.9% precision under 61.6% recall12, and MI and Dice based on GT achieve

9 We used KURA [15]. http://cl.naist.jp/lab/kura/doc/
10 41 out of 808 were incorrect due to semantic inconsistency between sibling cases.
11 R = # of correctly detected erroneous candidates / # of erroneous candidates,

P = # of correctly detected erroneous candidates / # of candidates classified as incorrect.
12 Dic classifies a given 〈v, c, n〉 as correct or not if and only if both v and n is described in

the dictionary. In our experiment, since 338 paraphrase candidates (10.7%) are not judged, we
calculated recall and precision using judged 2,828 candidates.

562 A. Fujita, K. Inui, and Y. Matsumoto

51.9% and 58.0% 11-point precision13. Regarding Pos, there is no significant difference
among the co-occurrence measures.

The performance of Pos is shown over the number of latent classes |Z| in Figure 4.
The larger |Z| achieves higher 11-point precision. However, overly enlarging |Z| pre-
sumably does not work well since the performance of Pos hits a ceiling. The optimal
|Z| relies on the lexicon but the performance distribution over |Z| looks moderate. We
therefore expect it can be estimated using development data with a reasonable cost.

Properties of negative model Negwas evaluated by conducting 5-fold cross-validation
over the labeled negative examples to keep training and test data exclusive. The weight
λi for i -th nearest neighbor is set to 1/i, the reciprocal of the similarity rank. The 11-
point precision for combinations of parameters are shown in Figure 4. In contrast to Pos,
the performance of Neg peaks at small |Z|. This is good news because a larger number
of |Z| obliges a higher computational cost for calculating each distance. Regarding the
number of referring neighbors k, the 11-point precision peaks at k = 1. We speculate
that the negative examples are so sparse against the combinatorial space that a larger k
causes more noise. Hence, we can conclude that k = 1 is enough for this task.

The performance of Neg may seem too high given the number of negative examples
we used. It is, however, not necessarily unlikely. We speculate the variety of triplets
involved in generated paraphrases is relatively small, because the set of paraphrasing
rules we used was build for the purpose of text simplification. Since it is common prop-
erty in applied paraphrasing systems as mentioned in Section 3, we can expect a limited
number of negative examples are sufficient to cover the negative classes.

Combining models with selectively sampled examples Using the 3,704 types of la-
beled triplets, we evaluated the effectiveness of (a) combining Pos with Neg and (b)
selective sampling. We first sampled at random two sets of 100 samples from 3,704
labeled triplets. One involved 16 negative examples and the other 22. Using for each
negative example set, we then simulated the selective sampling scheme, regarding the
remaining 3,604 triplets as the sample pool. Parameters and metrics employed are Prob
and |Z| = 1,000 for Pos, |Z| = 20 and k = 1 for Neg. In each stage of selective
sampling (learning), we formed a combined model Com, employing the parameters and
metrics on which each component model performed best, i.e., MI and |Z| = 1,000 for
Pos, and |Z| = 20 and k = 1 for Neg. Combining ratio β was set to 0.5. We then
evaluated Com by conducting 5-fold cross-validations as well as for Neg.

Figure 5 compares the performance of selective and random sampling, showing the
averaged results for two seeds. In the figure, the horizontal axis denotes the number of
sampled examples. The bars in the figure, which denote the number of obtained negative
examples, designate that our preference function efficiently selects negative examples.
The curves in the figure, which denote the performance curves, designate a remarkable
advantage of selective sampling, particularly in the early stage of learning.

Figure 6 shows the R-P curves of Pos, Neg, and Com. Com surpasses Pos and Neg
over all ranges of recall. One can see that the models based on selective sampling ex-

13 Notice that Prob based on GT does not perform for a lower recall (R ≤ 0.66, in our experi-
ment) because it does not distinguish the triplets that have the same frequency.

Detection of Incorrect Case Assignments in Paraphrase Generation 563

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

(Pos) |Z|=1000, Prob
(Pos) |Z|=1000, MI
(Pos) |Z|=1000, Dice
Good-Turing, Prob
Good-Turing, MI
Good-Turing, Dice
Dictionary-based (NTT Japanese Lexicon)

Fig. 3. R-P curves of baseline models.

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

2 5 10 20 50 100 200 500 1000

11
-p

oi
nt

 a
ve

ra
ge

 p
re

ci
si

on

of latent classes |Z|

(Neg) k=1
(Neg) k=2
(Neg) k=3
(Neg) k=5
(Pos) MI
(Pos) Dice
(Pos) Prob

Fig. 4. 11-point precision of models over |Z|.

0.7

0.72

0.74

0.76

0.78

0.8

0.82

100 500 1000 1500 2000 2500 3000 3704
0

100

200

300

400

500

600

700

800

900

1000

11
-p

oi
nt

 a
ve

ra
ge

 p
re

ci
si

on
 (

lin
es

)

of

 o
bt

ai
ne

d
ne

ga
tiv

e
ex

am
pl

es
 (

ba
rs

)

of sampled examples

Selective Sampling
Random Sampling

Fig. 5. Learning curves of Com. Lines: 11-point
average precision, bars: # of obtained negative
examples.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

(Com) w/ 3704 examples
(Com) w/ 1500 examples
(Com) w/ 500 examples
(Neg) w/ 3704 examples
(Neg) w/ 1500 examples
(Neg) w/ 500 examples
(Pos) Baseline

Fig. 6. R-P curves of our models.

hibit R-P curves as nicely as the model with the largest negative example set. It is
therefore confirmed that even if the collection of negative examples are not sufficient
to represent the distribution of the negative classes, we can enhance the baseline model
Pos by combining with Neg. With the largest negative examples, Com achieved 81.3%
11-point precision, a 12.1 point improvement over Pos. Concerning the optimal β which
depends on the set of negative examples, it can be easily estimated using development
data. For the present settings, the performance peaks when a slightly greater weight is
given to Neg, i.e., β = 0.45. However, we can use β = 0.5 as default, because there is
no significant difference in performance between β = 0.45 and β = 0.5.

5 Conclusions

We presented the task of detecting incorrect case assignment, a major error source in
paraphrasing of Japanese sentences. Our proposal are: (i) an empirical method to de-
tect incorrect case assignments, where we enhanced a statistical language model by
combining it with another model which was trained only on a small collection of nega-
tive examples, and (ii) a selective sampling scheme for effective collection of negative
examples. Our methods were justified through empirical experiments.

Since our aim is to generate correct paraphrases, correcting the detected errors is
another important issue. In [3], however, we observed that a only small part of incorrect
case assignments (22 / 162) could be corrected by replacing the case markers, while the

564 A. Fujita, K. Inui, and Y. Matsumoto

remaining large part could not be. Moreover, even if we could correct all incorrect case
assignments, other types of frequent errors would still be in the paraphrased sentences.
We thus think that coping with various type of errors should be given a preference.

References
1. ACL. The 2nd International Workshop on Paraphrasing: Paraphrase Acquisition and Appli-

cations (IWP), 2003.
2. J. Carroll, G. Minnen, D. Pearce, Y. Canning, S. Devlin, and J. Tait. Simplifying text for

language-impaired readers. In Proceedings of the 9th Conference of the European Chapter
of the Association for Computational Linguistics (EACL), pages 269–270, 1999.

3. A. Fujita and K. Inui. Exploring transfer errors in lexical and structural paraphrasing. Journal
of Information Processing Society of Japan, 44(11):2826–2838, 2003. (in Japanese).

4. T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd Annual In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR), pages 50–57, 1999.

5. S. Ikehara, M. Miyazaki, S. Shirai, A. Yokoo, H. Nakaiwa, K. Ogura, Y. Ooyama, and
Y. Hayashi, editors. Nihongo Goi Taikei – A Japanese Lexicon. Iwanami Shoten, 1997.
(in Japanese).

6. K. Inui, A. Fujita, T. Takahashi, R. Iida, and T. Iwakura. Text simplification for reading as-
sistance: a project note. In Proceedings of the 2nd International Workshop on Paraphrasing:
Paraphrase Acquisition and Applications (IWP), pages 9–16, 2003.

7. F. Keller, M. Lapata, and O. Ourioupina. Using the Web to overcome data sparseness. In
Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 230–237, 2002.

8. T. Kudo and Y. Matsumoto. Japanese dependency analysis using cascaded chunking. In
Proceedings of 6th Conference on Natural Language Learning (CoNLL), pages 63–69, 2002.

9. M. Lapata, F. Keller, and S. McDonald. Evaluating smoothing algorithms against plausibility
judgements. InProceedings of the 39th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 346–353, 2001.

10. L. Lee. On the effectiveness of the skew divergence for statistical language analysis. In
Proceedings of the 8th International Workshop on Artificial Intelligence and Statistics, pages
65–72, 2001.

11. NLPRS. Workshop on Automatic Paraphrasing: Theories and Applications, 2001.
12. F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words. In Proceedings

of the 31st Annual Meeting of the Association for Computational Linguistics (ACL), pages
183–190, 1993.

13. D. Ravichandran and E. Hovy. Learning surface text patterns for a question answering sys-
tem. In Proceedings of the 40th Annual Meeting of the Association for Computational Lin-
guistics (ACL), pages 215–222, 2002.

14. S. Shirai, S. Ikehara, and T. Kawaoka. Effects of automatic rewriting of source language
within a Japanese to English MT system. In Proceedings of the 5th International Conference
on Theoretical and Methodological Issues in Machine Translation (TMI), pages 226–239,
1993.

15. T. Takahashi, T. Iwakura, R. Iida, A. Fujita, and K. Inui. KURA: a transfer-based lexico-
structural paraphrasing engine. In Proceedings of the 6th Natural Language Processing
Pacific Rim Symposium (NLPRS) Workshop on Automatic Paraphrasing: Theories and Ap-
plications, pages 37–46, 2001.

16. K. Torisawa. An unsupervised learning method for associative relationships between verb
phrases. In Proceedings of the 19th International Conference on Computational Linguistics
(COLING), pages 1009–1015, 2002.

