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Abstract

This paper addresses the issue of cor-
recting transfer errors in paraphrasing.
Our previous investigation into trans-
fer errors occurring in lexical and struc-
tural paraphrasing of Japanese sen-
tences revealed that case assignment
tends to be incorrect, irrespective of
the types of transfer (Fujita and Inui,
2003). Motivated by this observation,
we propose an empirical method to de-
tect incorrect case assignment. Our er-
ror detection model combines two er-
ror detection models. They are sepa-
rately trained on a large collection of
positive examples and a small collec-
tion of manually labeled negative ex-
amples. Experimental results show
that our combined model significantly
enhances the baseline model which
is trained only on positive examples.
We also propose a selective sampling
scheme to reduce the cost of collecting
negative examples, and confirm the ef-
fectiveness for the error detection task.

1 Introduction

Recently, automatic paraphrasing has been at-
tracting increasing attention due to its potential in
a wide range of natural language processing ap-
plication (NLPRS, 2001; ACL, 2003). For exam-
ple, paraphrasing has been applied to pre-editing
and post-editing in machine translation (Shirai et
al., 1993), query expansion for question answer-
ing (Ravichandran and Hovy, 2002), and reading
assistance (Carroll et al., 1999; Inui et al., 2003).

There are various levels of lexical and struc-
tural paraphrasing as the following examples
demonstrate1:
(1) s. He accomplished the mission perfectly.

t. He achieved the mission perfectly.

(2) s. It was a Honda that John sold to Tom.
t. John sold a Honda to Tom.

In automating such paraphrasing, the difficulty
of specifying the applicability conditions of each
paraphrasing pattern is one of the major prob-
lems. For example, it is not easy to specify under
what conditions “accomplish” can be paraphrased
into “achieve”. Paraphrasing patterns with wrong
applicability conditions would produce various
types of erroneous paraphrases from input, which
we call transfer errors. We thus need to develop a
robust method to detect and correct transfer errors
in the post-transfer process by way of a safety net.

Our previous investigation revealed that case
assignment tends to be a major error source in
paraphrasing of Japanese sentences (Fujita and
Inui, 2003). Here is an example of incorrect case
assignment: applying the paraphrasing rule “ac-
complish ⇒ achieve” (cf. (1)) to sentence (3s)
generates (3t). But (3t) is incorrect, because the
word “achieve” requires the words, such as “aim”,
“record” and “success”, for its direct object.
(3) s. He accomplished the journey in an hour.

t.∗He achieved the journey in an hour.
One may suspect that incorrect case assignment

can be detected simply by referring to a hand-
crafted case frame dictionary which describes al-
lowable cases and their selectional restrictions for

1For each example, s denotes an input and t denotes its
paraphrase. Note that our target language is Japanese. En-
glish examples are used here for an explanatory purpose.



each verb. However, in existing case frame dic-
tionaries of Japanese, selectional restrictions are
generally specified based on coarse-grained se-
mantic classes of noun. It is therefore not ade-
quate for the purpose of the detection of incor-
rect case assignments (the detail will be given in
Section 2).

To capture even the difference between the us-
ages of near-synonyms, we deal with words di-
rectly instead of relying on their semantic classes.
Since a considerably large number of positive ex-
amples can be collected from existing corpora,
one can construct a statistical language model and
apply it to the error detection task. In this paper, to
enhance such a statistical language model, we in-
troduce the use of negative examples and address
the following two issues:

1. Unlike positive examples, negative examples
are generally not available. A challenging is-
sue is therefore how to effectively use a lim-
ited number of manually collected negative
examples combining with a large number of
positive examples.

2. Manual collection of negative examples is
costly and time-consuming. Moreover, any
such collection is sparse in the combinatorial
space of words. Hence, we need an effective
labeling scheme to collect negative examples
that truly contribute to error detection.

2 Incorrect case assignment

2.1 Frequency

In (Fujita and Inui, 2003), we investigated trans-
fer errors in Japanese from two points of view:
(i) what types of errors occur in performing lex-
ical and structural paraphrasing of Japanese sen-
tences, and (ii) which of them tend to be serious
problem. We implemented about 28,000 para-
phrasing rules2 consisting of various levels of lex-
ical and structural paraphrasing, and analyzed 630
automatically generated sentences.

An important observation in (Fujita and Inui,
2003) is that case assignment tends to be incor-
rect, irrespective of the types of paraphrasing. A
quarter of the paraphrased sentences (162 / 630)
exhibit this type of errors. This ratio indicates
the second most frequent errors, whereas the most
dominant type is inappropriate conjugation forms

2http://cl.aist-nara.ac.jp/lab/kura/KuraData/

of verbs and adjectives (303 / 630)3, which can
be easily corrected by revising the conjugation
forms.

2.2 Causes of errors

At least in Japanese, case assignment can be in-
correct at three different levels:
(i) Violation of syntactic constraints: Though
both of the verbs “tessuru” and “tsuranuku” have
the same meaning “devote” in the context of ex-
ample (4), the paraphrased sentence (4t) is incor-
rect because “tsuranuku” cannot take the “ni (da-
tive)” case.

(4) s. Team play-ni tessuru.
team play-DAT devote-PRES

He devotes himself to team play.

t.∗Team play-ni tsuranuku.
team play-DAT devote-PRES

(ii) Violation of selectional restrictions: The
verb “katameru (strengthen)” requires a concrete
object for its “o (accusative)” case. Since the
noun “kontei (basis)” in the paraphrased sentence
(5t) does not satisfy the constraint, (5t) is incor-
rect.

(5) s. Building-no kiban-o katameta.
building-GEN foundation-ACC strengthen-PAST

He strengthened the foundation of the building.

t.∗Building-no kontei-o katameta.
building-GEN basis-ACC strengthen-PAST

∗He strengthened the basis of the building.

(iii) Semantic inconsistency between sibling
cases: The nouns “hyogen (expressions)” and
“kakuchi (every land)” satisfy the semantic con-
straint for “ga (nominative)” and “ni (locative)”
cases of the verb “aru (exist)”, respectively. Nev-
ertheless, the paraphrased sentence (6t) is incor-
rect, because the meanings described by the sib-
ling cases are semantically inconsistent.

(6) s. Nankai-na hyogen-ga
crabbed-ADJ expressions-NOM

zuisho-ni aru.
many places-LOC exist-PRES

There are crabbed expressions in many places.

3The third most frequent error was incorrect functional
word connections that occurred in 78 sentences. The other
errors occurred in less than 40 sentences.



t.∗Nankai-na hyogen-ga
crabbed-ADJ expressions-NOM

kakuchi-ni aru.
every land-LOC exist-PRES

∗There are crabbed expressions in every land.

2.3 Task setting

Supposing that the case assignments in input sen-
tences into paraphrasing are all correct, the target
of error detection is to detect anomalies yielded
in the paraphrased case structures that consist of
a verb, case particles, and case fillers (nouns). To
handle them, we assume dependency structures
due to the following reasons:

• For english, linear structure-based statistics,
e.g., n-grams can predict human plausibil-
ity judgments, namely, correctness (Lapata
et al., 2001; Keller et al., 2002). How-
ever, there is no guarantee that they perform
well in Japanese, because word ordering in
Japanese is relatively unrestricted compared
with English.

• Most of the paraphrasing systems for
Japanese deal with dependency structures
(Kondo et al., 2001; Takahashi et al., 2001;
Kaji et al., 2002). That is, such a system
generates paraphrases annotated with a de-
pendency structure, whatever transfer error
occurs.

As mentioned in Section 1, existing case frame
dictionaries tend to specify selectional restrictions
relying on a coarse-grained semantic typology.
For example, the difference between two near-
synonyms “kiban (foundation)” and “kontei (ba-
sis)” is crucial in the context of example (5), but
most of the dictionaries do not distinguish them,
classifying them as the same semantic class “ba-
sis”. Such a dictionary is not adequate for detec-
tion of incorrect case assignment.

Instead, we deal with words directly. Let v, n
and c be a verb, a noun and the case particle which
connects v and n, respectively. We reduce the er-
ror detection task into the classification of triplet
〈v, c, n〉 into correct or incorrect. A given para-
phrased sentence is judged to be incorrect if and
only if any of the triplets included in the sentence
is classified as incorrect.

By dealing with 〈v, c1, n1, c2, n2〉 to take into
account the association between two sibling
cases, as in (Torisawa, 2002), we might be able

to detect semantic inconsistency as (6t) exhibits.
However, considering that the sibling cases could
rarely be semantically inconsistent4 and building
a distribution model of 〈v, c1, n1, c2, n2〉 is likely
to cause a data sparseness problem, we build a er-
ror detection model taking only 〈v, c, n〉 into ac-
count.

3 Error detection models

3.1 Issues

The error detection task looks similar to statisti-
cal machine translation in the sense that both in-
volve the process of evaluating the appropriate-
ness of given sentences (e.g., (Knight and Chan-
der, 1994)). In statistical machine translation,
systems use statistics to compare output candi-
dates. Therefore, what is needed to estimate is
relative likelihood. For error detection in para-
phrasing, however, we need a model for judging
the absolute correctness of each output candidate
for the following reason. Paraphrasing systems
are developed typically for a particular purpose
such as simplifying text and controlling word-
ing. In such systems, the variety of paraphrasing
rules tends to be restricted; so the rule set some-
times produces no appropriate paraphrase candi-
date for a given input sentence. An error detection
model therefore needs the ability to not only com-
pare candidates but also give up producing output
when none of the candidates is correct.

If error detection is defined as the task of clas-
sifying the candidates as correct or incorrect, one
may want to use both positive and negative exam-
ples to train a classifier. However, positive and
negative examples are significantly imbalanced,
and any collection of negative examples is likely
to be too small to represent the distribution of
the negative class. Therefore, it is probably not
a good choice to input them into a single clas-
sifier induction algorithm such as support vector
machines.

Instead, we separately train two models, the
positive model (Pos) and the negative model
(Neg) as illustrated in Figure 1, then combine
them to create another model (Com). Since nega-
tive examples have to be collected by hand, we
also investigate the effectiveness of a selective

4According to the analysis in (Fujita and Inui, 2003),
only 8 cases of the 162 incorrect case assignments had se-
mantically inconsistent sibling cases.
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Figure 1: Model construction scheme.

sampling scheme to reduce human labor.
The rest of this section elaborates on our error

detection model and selective sampling scheme.

3.2 Combining separately trained models

3.2.1 Positive model

Since a considerably large number of positive
examples can be collected from existing corpora
using a parser, one can estimate the probability
P (〈v, c, n〉) with reasonable accuracy. On that
account, we first construct a baseline model Pos,
a statistical language model trained only on the
positive examples.

To calculate P (〈v, c, n〉) avoiding the data
sparseness problem, one can use Probabilistic La-
tent Semantic Indexing (PLSI) (Hofmann, 1999)
which bases itself on distributional clustering
(Pereira et al., 1993). PLSI is a maximum likeli-
hood estimation method. Dividing5 〈v, c, n〉 into
〈v, c〉 and n, one can estimate P (〈v, c, n〉) by:

P (〈v, c, n〉) =
∑
z∈Z

P (〈v, c〉|z)P (n|z)P (z),

where Z denotes a set of latent classes
of co-occurrence, and probabilistic parameters
P (〈v, c〉|z), P (n|z), and P (z) can be estimated
by the EM algorithm.

Given P (〈v, c, n〉), we can use various co-
occurrence measures to estimate the likelihood of

5P (〈v, c, n〉) can be represented by the product of
P (〈v, c〉) and P (n|〈v, c〉). Both of the marginal distribu-
tions corresponds existing linguistic concept; the former in-
dicates the likelihood of a case structure, while the latter
does the satisfaction degree of semantic constraint.

a given pair of 〈v, c〉 and n. Well-known options
are P (〈v, c, n〉) (Prob), mutual information (MI),
and the Dice coefficient (Dice).

3.2.2 Negative model
Pos might not be able to properly judge the cor-

rectness of 〈v, c, n〉 by setting a simple threshold,
particularly in cases where P (〈v, c〉) or P (n) is
low. This defect is expected to be compensated
for by the use of negative examples. However,
we cannot incorporate negative examples into the
statistical language model directly. We thus con-
struct a negative model Neg separately from Pos.

One simple way of using negative examples is
the k-nearest neighbor (k-NN) averaging method.
Assuming that the distance between an input
triplet 〈v, c, n〉 and a labeled negative example
〈v′, c′, n′〉 depends on both the distance between
〈v, c〉 and 〈v′, c′〉 and the distance between n and
n′, we formulate the following distance function:

Dist(〈v, c, n〉, 〈v′, c′, n′〉) = DS
(
P (Z|n), P (Z|n′)

)
+DS

(
P (Z|〈v, c〉), P (Z|〈v′, c′〉)

)
,

Here, P (Z|〈v, c〉) and P (Z|n) are the feature
vectors for 〈v, c〉 and n. These probability dis-
tributions are obtained through the EM algorithm
for Pos, and the function DS denotes distribu-
tional similarity between two probability distri-
butions. One popular measure of distributional
similarity is Jensen-Shannon divergence (DSJS),
which is examined in (Lapata et al., 2001; Lee,
2001). Given the pair of probability distributions
q and r, DSJS is given by:

DSJS(q, r) =
1
2

[
D

(
q

∥∥∥ q + r

2

)
+ D

(
r

∥∥∥ q + r

2

)]
,

where the function D is the Kullback-Leibler
divergence. Therefore, DSJS is always non-
negative, and DSJS = 0 iff q = r.

Given an input 〈v, c, n〉, Neg outputs the
weighted average distance ScoreNeg between the
input and its k nearest neighbors as the score in-
dicating the degree of correctness. Formally,

ScoreNeg =
1
k

k∑
i=1

λi Dist (〈v, c, n〉, 〈v′, c′, n′〉i) ,

where λi is the weight for 〈v′, c′, n′〉i, the i -th
nearest neighbor.



3.2.3 Combined model
Given the pair of scores output by Pos and Neg,

our error detection model Com converts them into
normalized confidence values CPos and CNeg

(0 ≤ CPos, CNeg ≤ 1). Each normalization func-
tion can be derived using development data (see
Section 4). Com then outputs the weighted aver-
age of CPos and CNeg as the overall score:

ScoreCom = β CPos + (1 − β)CNeg,

where 0 ≤ β ≤ 1 determines the weights of the
models. ScoreCom indicates the degree of cor-
rectness.

3.3 Selective sampling of negative data

We need negative examples that are expected to
be useful in improving Neg and Com. For the
current purpose, an example is not useful if it is
positive. An example is not useful, either, if it is
similar to any of the known negative examples. In
other words, we prefer negative examples that are
not similar to any existing labeled negative exam-
ple. We henceforth refer to unlabeled instances as
samples, and labeled ones as examples.

Our strategy for selecting samples can be im-
plemented straightforwardly. We use Pos to es-
timate how likely a sample is negative. To com-
pute the similarity between an unlabeled sample
and labeled examples, we use Neg. Let px be
the estimated probability of an unlabeled sample
x, and sx(> 0) be the similarity between x and
its nearest negative example. The preference for
a given sample x is given by, e.g., Pref(x) =
−sx log(px), which we use in the experiments be-
low.

Our selective sampling scheme is as follows:
1. Generate a set of paraphrases by apply-

ing paraphrasing rules to sentences sampled
from documents in a given target domain.

2. Extract a set of triplets from the set of para-
phrases. We call it a sample pool.

3. Sample a small number of triplets randomly
from the sample pool, and label them manu-
ally. Use only negative samples as the seed
of the negative example set for Neg.

4. For each sample in the sample pool, calcu-
late its preference by Pref given above.

5. Select the most preferred sample, and label
it manually. If it is negative, add it into the
negative example set.

6. Repeat Steps 4 and 5 until a certain stop-
ping condition is satisfied (for example, the
performance for development data is con-
verged).

4 Experiments

4.1 Data

We trained Pos and Neg in the following way
(Also see Figure 1). During this process, para-
phrase candidates were constructed for evaluation
as well.

1. 53 million tokens (8.0 million types) of
triplets 〈v, c, n〉 were collected from the
parsed6 sentences of newspaper articles7.

2. Triplets occurring only once were filtered
out. To handle case alteration properly, we
dealt with active and passive forms of verbs
separately. We restricted c to be the most
frequent seven case particles: “ga (NOM)”,
“o (ACC)”, “ni (DAT)”, “de (LOC)”, “e (to)”,
“kara (from)”, and “yori (from / than)”. This
procedure resulted in 3.1 million types of
triplets consisting of 38,512 types of n and
66,484 of 〈v, c〉.

3. We estimated the probabilistic parameters of
PLSI by applying the EM algorithm8 to the
data, changing the number of latent classes
|Z| from 2 through 1,500.

4. To develop a negative example set, we ex-
cerpted 90,000 sentences from the news-
paper articles used in Step 1, input them
into a paraphrasing system for Japanese9,
and obtained 7,167 paraphrase candidates by
applying the same paraphrasing rules that
were used for our previous investigation into
transfer errors (Fujita and Inui, 2003).

5. We filtered out the generated candidates that
contain no changed case structure and those
that include either v or n with a frequency
of less than 2,000 in the collection given in
Step 1. As a result, 3,166 candidates re-
mained.

6We used the statistical Japanese dependency parser
CaboCha (Kudo and Matsumoto, 2002) for parsing.
http://cl.aist-nara.ac.jp/˜taku-ku/software/cabocha/

7Extracts from 9 years of the Mainichi Shinbun and 10
years of the Nihon Keizai Shinbun consisting of 25,061,504
sentences are used.

8http://cl.aist-nara.ac.jp/˜taku-ku/software/plsi/
9We used KURA (Takahashi et al., 2001).

http://cl.aist-nara.ac.jp/lab/kura/doc/
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Figure 2: R-P curves of baseline models.

6. Finally, we manually labeled the 3,166 can-
didates and their triplets. We obtained (i)
2,358 positive and 808 (25.5%) negative
candidates10, and (ii) 3,704 types of triplets
consisting of 2,853 positive and 851 nega-
tive. The former set was used for evaluation,
while the latter was used for training Neg.

4.2 Evaluation measures

For evaluation, we compared the performance of
Pos, Neg, and Com. For each model, we set a
threshold and used it so that a given input was
classified as erroneous if and only if it received
a lower score than the threshold. Given such a
threshold, recall R and precision P of a model
are defined as follows:

R =
# of correctly detected erroneous candidates

# of erroneous candidates
,

P =
# of correctly detected erroneous candidates

# of candidates the model classified as erroneous
.

While we could estimate the optimal threshold for
each model, in the experiments, we plotted recall-
precision (R-P ) curves by varying the threshold.
To summarize a R-P curve, we used 11-point
average precision (11-point precision, hereafter)
where the eleven points are R = 0.0, 0.1, . . . , 1.0.
To compare R-P curves, we conducted Wilcoxon
rank-sum test using precision at eleven point
above, assuming p < 0.05 as the significancy
level.

4.3 Results

4.3.1 Baseline
First, to illustrate the complexity of the task,

we show the performance of the baseline mod-
1041 out of 808 were incorrect due to semantic inconsis-

tency between sibling cases.
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els: a dictionary-based model, a word-based naive
smoothing model, and our statistical language
model Pos. We regard Pos as a baseline because
our concern is to what extent Pos can be en-
hanced by introducing Neg and Com. For the case
frame dictionary, we used the largest Japanese
case frame dictionary, the NTT Japanese Lexicon
(Ikehara et al., 1997) (Dic), and the Good-Turing
estimation (GT) for the naive smoothing model.

As shown in Figure 2, Pos significantly outper-
forms both Dic and GT . Prob, MI and Dice with
|Z| = 1,000 achieve 65.6%, 69.2% and 67.5%
11-point precision, while Dic achieves 41.9% pre-
cision under 61.6% recall11, and MI and Dice
based on GT achieve 51.9% and 58.0% 11-point
precision12. Regarding Pos, Prob outperforms MI
and Dice for lower recall, while MI and Dice out-
perform Prob for higher recall. But there is no
significant difference among them.

The classification performance of Pos is shown
over the number of latent classes |Z| in Figure 3.
The larger |Z| achieves higher 11-point precision.
However, overly enlarging |Z| will presumably
not work well since the performance of Pos hits
a ceiling. Since the optimal |Z| relies on the lex-
icon, we need to estimate it for a given lexicon
using development data. However, since the per-
formance distribution over |Z| is so moderate, we
can optimize |Z| with a reasonable cost.

11Dic classifies a given 〈v, c, n〉 as correct or not if and
only if both v and n is described in the dictionary. In our
experiment, since 338 paraphrase candidates (10.7%) are
not judged, we calculated recall and precision using judged
2,828 candidates.

12Notice that Prob based on GT does not perform for a
lower recall (R ≤ 0.66, in our experiment) because it does
not distinguish the triplets that have the same frequency.



0.7

0.72

0.74

0.76

0.78

0.8

0.82

100 500 1000 1500 2000 2500 3000 3704
0

100

200

300

400

500

600

700

800

900

1000

11
-p

oi
nt

 a
ve

ra
ge

 p
re

ci
si

on
 (

lin
es

)

# 
of

 o
bt

ai
ne

d 
ne

ga
tiv

e 
ex

am
pl

es
 (

ba
rs

)

# of sampled examples

Selective Sampling
Random Sampling

Figure 4: Learning curves of Com: curves: 11-
point precision, bars: # of obtained negative ex-
amples.

4.3.2 Properties of negative model

Neg was evaluated by conducting 5-fold cross-
validation over the labeled negative examples to
keep training and test data exclusive. The weight-
ing function λi for i -th nearest neighbor is set to
1/i, the reciprocal of the similarity rank. The
11-point precision for combinations of parame-
ters are shown in Figure 3. In contrast to Pos, Neg
achieves the best with small |Z|. This is good
news because a larger number of |Z| obliges a
higher computation cost for calculating each dis-
tance. With regard to the number of consulting
neighbors k, the 11-point precision peaks at k =
1. We speculate that the combinatorial space is so
large that a larger k causes more noise. Hence, we
can conclude that k = 1 is enough for this task.

The performance of Neg may seem too high
given the number of negative examples we used.
However, it is not necessarily unlikely. Recall that
the set of paraphrasing rules we used was built for
the purpose of text simplification. In such a case,
presumably the variety of triplets involved in gen-
erated paraphrases is relatively small. Therefore,
a limited number of negative examples suffices to
cover the negative classes. This is expected to be
a common property in applied paraphrasing sys-
tems as mentioned in Section 3.1.

4.3.3 Combining models with selectively
sampled examples

To evaluate the effectiveness of (a) combining
Pos with Neg and (b) selective sampling, we con-
ducted simulations using the 3,704 types of la-
beled triplets.

We first randomly sampled two sets of 100
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Figure 5: R-P curves of our models.

samples from 3,704 labeled triplets. One involved
16 negative examples and the other 22. We used
these two different sets of negative examples as
seeds of the negative example set. We then con-
ducted the selective sampling scheme for each
seed, regarding the remaining 3,604 triplets as the
sample pool. Parameters and metrics employed
are Prob and |Z| = 1,000 for Pos, |Z| = 20 and
k = 1 for Neg.

In each stage of selective sampling (learning),
we formed a combined model Com, employing
the parameters and metrics on which each com-
ponent model performed best, i.e., MI and |Z| =
1,000 for Pos, and |Z| = 20 and k = 1 for Neg.
Combining ratio β was set to 0.5 just for averag-
ing. We then evaluated Com by conducting 5-fold
cross-validations as well as for Neg.

Figure 4 compares the performance of selective
and random sampling, showing the averaged re-
sults for two seeds. In the figure, the horizon-
tal axis denotes the number of sampled exam-
ples. The bars in the figure denote the number
of obtained negative examples, showing that pref-
erence function efficiently selects negative exam-
ples compared to random sampling. The curves in
the figure denote the performance curves which
show a remarkable advantage of selective sam-
pling, particularly in the early stage of learning.

Figure 5 shows the R-P curves of Pos, Neg,
and Com. Com surpasses Pos and Neg over all
ranges of recall. One can see that the models
based on selective sampling exhibit R-P curves
as nicely as the model with the largest negative
example set. It is therefore confirmed that even if
the collection of negative examples are not suffi-
cient to represent the distribution of the negative
classes, we can enhance the baseline model Pos



by combining it with Neg. With the largest nega-
tive examples, Com achieved 81.3% 11-point pre-
cision, a 12.1 point improvement over Pos. Con-
cerning the optimal β which depends on the set of
negative examples, it can be easily estimated us-
ing development data. For the present settings,
the performance peaks when a slightly greater
weight is given to Neg, i.e., β = 0.45. However,
there is no significant difference in performance
between β = 0.45 and 0.5. Hence, we can regard
0.5 as the default value for β.

5 Conclusions

We addressed the task of detecting incorrect case
assignment, a major error source in paraphrasing
of Japanese sentences. Our proposal are: (i) an
empirical method to detect incorrect case assign-
ments, where we enhanced a statistical language
model by combining it with another model which
was trained only on a small collection of negative
examples, and (ii) a selective sampling scheme
for effective collection of negative examples. Our
methods were justified through empirical experi-
ments.

Since our aim is to generate correct para-
phrases, we should correct the detected errors. In
(Fujita and Inui, 2003), we observed that a small
part of incorrect case assignments (22 / 162) could
be corrected by replacing case markers with the
other ones, while the remaining large part could
not be. Furthermore, even if we could correct all
incorrect case assignments, other types of errors
would still be in the paraphrased sentences. We
thus think that coping with various type of errors
is more important. The errors discussed in this
paper appear on relatively shallow levels of syn-
tax and semantics. Our next challenge will go to
a deeper level such as the verification of whether
meaning is preserved or not.
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