< COLING 2008, Aug. 19th, 2008 >

A Probabilistic Model for Measuring Grammaticality and Similarity of Automatically Generated Paraphrases of Predicate Phrases

Atsushi FUJITA and Satoshi SATO Nagoya Univ., Japan

Overview

2

Automatic Paraphrasing

Fundamental in NLP

- Recognition: IR, IE, QA, Summarization
- Generation: MT, TTS, Authoring/Reading aids
- Paraphrase knowledge
 - Handcraft
 - Thesauri (of words) [Many work]
 - Transformation rules [Mel'cuk+, 87] [Dras, 99] [Jacquemin, 99]
 - Automatic acquisition
 - Anchor-based [Lin+, 01] [Szpektor+, 04]
 - Aligning comparable/bilingual corpora [Many work]

Representation of Paraphrase Knowledge

Instantiating Phrasal Paraphrases

Over-generation leads to spurious instances

- cf. filling arguments [Pantel+, 07]
- cf. applying to contexts [Szpektor+, 08]

Task Description

Measuring the quality of paraphrase candidate Input: Automatically generated phrasal paraphrases

Quality as Paraphrases

Three conditions to be satisfied

- 1. Semantically equivalent
- 2. Substitutable in some context
- 3. Grammatical
- Approaches
 - Acquisition of instances
 - 1 and 2 are measured, assuming 3
 - Instantiation of abstract pattern (our focus)
 - 1 and 2 are weakly ensured
 - 3 is measured, and 1 and 2 are reexamined

Outline

- 1. Task Description
- 2. Proposed Model
- 3. Experiments
- 4. Conclusion

Proposed Model

Assumptions

- *s* is given and grammatical
- *s* and *t* do not co-occur

Formulation with a conditional probability

$$P(t|s) = \sum_{f \in F} P(t|f)P(f|s)$$

$$= \sum_{f \in F} \frac{P(f|t)P(t)}{P(f)}P(f|s)$$

$$= P(t)\sum_{f \in F} \frac{P(f|t)P(f|s)}{P(f)}$$
Grammaticality Similarity

Grammaticality Factor

Statistical Language Model

- Structured *N*-gram LM
- Normalized with length

$$P(t) = \left[\prod_{i=1...|T(t)|} P_d(c_i | d_i^1, d_i^2, \dots, d_i^{N-1})\right]^{1/|T(t)|}$$

Grammaticality Factor: Definition of Nodes

For Japanese

• What present dependency parsers determine

Bunsetsu: (Content word) + (Function word) *

- Bunsetsu dependencies
- Bunsetsu can be quite long (so not appropriate)

(He will surely not come to today's meeting.)

Grammaticality Factor: MDS

Morpheme-based Dependency Structure [KURA, 01]

- Node: Morpheme
- Edge:
 - Rightmost node \rightarrow Head-word of its mother *bunsetsu*
 - Other nodes \rightarrow Succeeding node

surely he TOP today GEN meeting DAT TOP come NEG must (He will surely not come to today's meeting.)

Grammaticality Factor: CFDS

- Content-Function-based Dependency Structure
 - Node: Sequence of content words or of function words
 - Edge:
 - Rightmost node \rightarrow Head-word of its mother *bunsetsu*
 - Other nodes \rightarrow Succeeding node

Grammaticality Factor: Parameter Estimation

MLE for 1, 2, and 3-gram models

Linear interpolation of 3 models

• Mixture weights were determined via an EM

Similarity Factor

A kind of distributional similarity measure

$$\sum_{f \in F} \frac{P(f|t)P(f|s)}{P(f)}$$

Contextual feature set (F)

BOW: Words surrounding *s* and *t* have similar distribution \Rightarrow *s* and *t* are semantically similar

MOD: *s* and *t* share a number of modifiers and modifiees \Rightarrow *s* and *t* are substitutable

Similarity Factor: Parameter Estimation

Employ Web snippets as an example collection

- To obtain sufficient amount of feature info.
- Yahoo! JAPAN Web-search API
 - "Phrase search"
 - 1,000 snippets (as much as possible)

AFOO!。検索 「急いで確認する」	検索	検索オプション
ウェブ検索結果 (検索結果の見方)	" <u>急いで確認する</u> " で検索した結果	1~10件目 / 約269件 - 0.03秒
 <u>熊本城攻防戦一転一(3)</u> 視界の隅で何かが動いた気がして、急いで確認する。見れば子猫が二匹 た。「なんだ猫かよ。にゃーと茂みから聞こえ、2匹の猫はその声に釣 に茂みの中に消えた。しばらくして、ひょこっと城壁の上に何かが乗っ た。また猫か?と思い視線を上げる。… www.geocities.jp/darts2035/ss_11_tenn_3.html - <u>キャッシュ</u> 	られたよう	<u>ポンサーサイト</u> <u>掲載について</u>
 ポケモンノベル 第六十六話/光と闇「く・・・(ここは・・・」 ――一大丈夫ですか?―― です。 でもここは・・・」 ポケモンセンターではない. (畜生・・・) ポ いで確認する。 幸い全員いたが、皆、瀕死状態まで痛め付けられていた。 www7.plala.or.jp/mewtwo777/novel/137/18-66.html – <u>キャッシュ</u> 	ケモンを 急 。 「畜生	

Similarity Factor: Parameter Estimation (cont'd)

MLE

- P(f|p)
 - Based on snippets

Summary

- What is taken into account
 - Grammaticality of *t*
 - Similarity between *s* and *t*
- You do not need to enumerate all the phrases
 - cf. P(ph | f), pmi(ph, f)

Outline

- 1. Task Description
- 2. Proposed Model
- 3. Experiments
- 4. Conclusion

Overview

20

Test Data

Extract input phrases

- 1,000+ phrases × 6 basic phrase types
- Mainichi (1.5GB)
- Referring to structure
- Paraphrase generation [Fujita+, 07]
 - 176,541 candidates for 4,002 phrases
- Sampling
 - Candidates for 200 phrases
 - Diverse cases (see column Y)

	All	Sampled		
Phrase type	s	s	$\langle s,t angle$	Y
N:C:V	489	18	57	3.2
$N_1:N_2:C:V$	966	57	$4,\!596$	80.6
$N:C:V_1:V_2$	982	54	4,767	88.3
$N{:}C{:}Adv{:}V$	523	16	51	3.2
Adj:N:C:V	50	2	8	4.0
$N{:}C{:}Adj$	992	53	173	3.3
Total	4,002	200	$9,\!652$	48.3

Overview

22

Viewpoint

- How well a system can rank a correct candidate first?
- Models evaluated
 - Proposed model
 - All combination of options

Results (max 1,000 snippets)

of cases that gained positive judgments

Models except CFDS+Mainichi << the best models

XXX: best

XXX: significantly worse than the best (McNemer's test, p<0.05)

Results (max 1,000 snippets, HAR)

Lenient precision and score

• Best candidate \land Relatively high score \Rightarrow High precision

Considerations

Harnessing the Web led to accurate baselines

1. Looking up the Web ... Feature retrieval

+ Grammaticality check

- 2. Comparing feature distributions ... Similarity check
- Two distinct viewpoints of similarity are combined Constituent similarity:

Syntactic transformation + Lexical derivation [Fujita+, 07]
 Contextual similarity:

Bag of words / Bag of modifiers

Diagnosis shows the room of improvement

Conclusion & Future work

Measuring the quality of paraphrase candidates Input: Automatically generated phrasal paraphrases Output: Quality score [0,1]

- Semantically equivalent
- Substitutable in some context
- Grammatical

≻ Similarity

- Grammaticality
- Overall: 54-62% (cf. Lin/skew: 58-65%, HITS: 60%)
- Top 50: 80-92% (cf. Lin/skew: 90-98%, HITS: 70%)

Future work

- Feature engineering (including parameter tuning)
- Application to non-productive paraphrases