Detecting Real Money Traders in MMORPG by Using Trading Network

Atsushi FUJITA Hiroshi ITSUKI Hitoshi MATSUBARA

Future University Hakodate, JAPAN
fujita@fun.ac.jp
Help the online game operators

- Focusing on Massively Multiplayer Online RPG
 - Thousands of players co-exist in one virtual “world”
 - cf. millions of registered players
Operators’ issue: Grasp the virtual world

- To facilitate further growth
 - Effect of features
 - Extended game fields, one-shot events
 - Influential players
 - Mentoring, intermediation, trades

- To maintain the order of the virtual world
 - Harassments between players
 - Player killing, occupation of specific locations
 - Causes that lead unfairness and crisis of virtual economy
 - Real Money Trading, use of bots, cheat
RMT: Real Money Trading

- Real money ↔ Virtual properties
 - Currency, items, status, functions, avatars, etc.
 - Observed in other online services, e.g., SNS, auction

- Two opposing attitudes (sometimes ambivalent)
 - **Positive**: Means of augmenting the real world
 - e.g., Second Life
 - **Negative**: Source of serious problems
 - e.g., Most MMORPGs in Japan
Task & given situation

- Automatic detection of RMTers
 - Actual log data is available
 - Now with TECMO KOEI GAMES CO., LTD.
 - Prefer title independent features
 - Operators want no arms race
 - Desire un-cheatable features
 - Operators’ verification is indispensable
 - To avoid ruling out honest players
 - The amount of human resource depends on situation
 - Title (scale, seriousness) and budget for operation
 - Prefer unsupervised or semi-supervised methods
Outline

1. Introduction
2. Approach
3. Procedure
4. Experiment
5. Conclusion
As a binary classification

- Classify each character into RMTer or non-RMTer
 - Supervised machine learning [Ahmad+, 09]
 - Naïve Bayes, k-NN, AdaBoost, etc.
 - Various features (incl. those specific to the title)
 - Not flexible: Too much/less positive class
As a ranking problem

- Sort characters according to their suspiciousness
 - Using cumulative features [Itsuki+, 10]
 - Handled currency
 - dealing with enormous virtual currency
 - Volume of actions
 - Activity hours
 - Not thoroughly studied

Ranking:

1st 2nd 3rd 4th 5th 6th 7th
Connection between pairs of characters

- Extremely low exchange rate, e.g., full of wallet =
 - Division of RMT labor & frequent trade
- Infrastructure for trading → log data are available

Volume of individual trade
Trading sub-network (from our data)

- RMTers and their trading partners in one timeframe
 - Division of labor of RMTers
 - Typical roles
 - Seller
 - Earner
 - Collector
 - Tight connection
Communities in the trading network

Possibility of wholesale arrest
Outline

1. Introduction
2. Approach
3. Procedure
4. Experiment
5. Conclusion
Overview

Raw log data

Step 1. Extracting communities from trading network

Step 2. Ranking characters
Step 1. Community extraction

- Graph partitioning / graph clustering
 - Node: Character
 - Edge: Trade between two characters
Which division is best?
Quality of a given division of network

- Modularity [Newman+, 04]

\[Q = \sum_i (e_{ii} - a_i^2) \]

- Many edges in each community → Large \(Q \)
- Expected value of link ratio: to avoid a trivial solution

\[\frac{\sum_{e \in E_i} (\text{weight of } e)}{\sum_{e \in E} (\text{weight of } e)} \]

\[\frac{\sum_{e \in A_i} (\text{weight of } e)}{\sum_{e \in E} (\text{weight of } e)} \]

- \(E \): Set of all edges in the network
- \(E_i \): Set of edges within \(i^{th} \) community
- \(A_i \): Set of edges connecting to a node in \(i^{th} \) community
Community extraction algorithm

- Finding a partitioning that maximizes Q: NP-hard
- A bottom-up greedy algorithm [Clauset+, 04]
 1. Regard each node as a community and calculate ΔQ for each connected community pair
 2. Merge two communities whose ΔQ is largest (and >0)
 3. Update ΔQ for the merged communities
 4. Repeat steps 2 & 3 while Q gains
Step 2. Ranking characters

- Frequent and/or large-scale trades \rightarrow RMT
 1. Ranking communities
 - In-community trades
 2. Ranking characters in each community
 - Trades of individual character
Outline

1. Introduction
2. Approach
3. Procedure
4. Experiment
5. Conclusion
Application to a real MMORPG

“Uncharted Waters Online”
- Exploration, naval battle and trading in mid-ages
- RMT is prevalent

4 timeframes (15〜23 days, no overlap)
- RMTers are identified (& banned) manually
 - 29〜130 (<1%) within 15,249〜18,745 characters
- Actual action log data in the same period
 - 300〜480 million records

(C) 2005-2011 TECMO KOEI GAMES CO., LTD.
All rights reserved.
Traders and RMTers

- Obs.
 - Half of all characters traded something
 - 1/3 of all characters traded virtual currency
 - Most of RMTers traded virtual currency
 - Only 1 exception in period D
Target characters and weight of trade
- **All traders**
 - tb: binary
 - tt: # of times
- **Currency traders**
 - cb: binary
 - ct: # of times
 - cv: volume

Obs.
- Weights of trades / focusing on currency → fine-grained
- RMTers → only a few communities (1-8)
Evaluation metrics for RMTer detection

- Available human resource is unknown
 - It varies depending on the situation

- Two measures
 - Balance between Recall and Precision
 - Recall (R): how exhaustively RMTers are identified
 - Precision (P): how correctly system identifies RMTers
 - Avg. Precision at various recall

1 RMTer is found
2 RMTers are found
3 RMTers are found
... All RMTers are found
Parameter selection of proposed method (1/2)

- Representation of trading network
 - All traders
 - tb: binary
 - tt: # of times
 - Currency traders
 - cb: binary
 - ct: # of times
 - cv: volume

- Measure for in-community trades
 - tt: # of trade transactions
 - ct: # of currency transactions
 - cv: Total volume of traded currency

- Measure for trades of individual character
 - tt: # of trade transactions
 - ct: # of currency transactions
 - cv: Total volume of traded currency
Parameter selection of proposed method (2/2)

- 45 combinations → 10
 - Representation of trading network (5)
 - Different network achieved the best result in different period
 - Measure for in-community trades (3 → 1)
 - Volume of traded currency \((cv)\) > # of transactions \((tt, ct)\)
 - Measure for trades of individual character (3 → 2)
 - Traded currency \((ct, cv)\) > All trade \((tt)\)

- Implications
 - Large amount of currency is exchanged for RMT
 - RMTers dealt with more than 1/3 of total currency trades
 - Virtual currency is popular in RMT
 - Buyers want virtual currency
Baselines: direct assessment of each char.

- Sort characters based on handled currency (cv)
- Two supervised methods (w/o constants)
 - Naïve Bayes
 - with multinomial distribution [McCallum+, 98]
 \[
 \text{Score}(c) = \sum_{a \in A(c)} \text{freq}(a, c) \log \frac{P(a|\text{RMTer})}{P(a|\text{non-RMTer})}
 \]
 - Support Vector Machines [Vapnik, 99]
 - with linear kernel (SVM\text{light} is used)
 \[
 \text{Score}(c) = \sum_{x_i \in X} y_i \alpha_i K(x_i, c)
 \]
 \{+1: RMTer, -1: non-RMTer\}
 - Feature: all of 338 types of actions
 - trade, attack to other player, find an item, invest for a ship
Several versions beat all the baselines
- But nothing significantly wins in all periods

<table>
<thead>
<tr>
<th>Model</th>
<th>Target char. set</th>
<th>Period A $N = 29$</th>
<th>Period B $N = 52$</th>
<th>Period C $N = 106$</th>
<th>Period D $N = 130$</th>
</tr>
</thead>
<tbody>
<tr>
<td>cv</td>
<td>Currency traders</td>
<td>0.320</td>
<td>0.440</td>
<td>0.484</td>
<td>*0.466</td>
</tr>
<tr>
<td>MNB</td>
<td>All chars</td>
<td>0.239</td>
<td>0.305</td>
<td>0.342</td>
<td>0.357</td>
</tr>
<tr>
<td></td>
<td>Traders</td>
<td>0.273</td>
<td>0.367</td>
<td>0.381</td>
<td>0.416</td>
</tr>
<tr>
<td></td>
<td>Currency traders</td>
<td>0.336</td>
<td>0.391</td>
<td>0.420</td>
<td>*0.469</td>
</tr>
<tr>
<td>SVMs</td>
<td>All chars</td>
<td>0.340</td>
<td>0.198</td>
<td>0.438</td>
<td>0.517</td>
</tr>
<tr>
<td></td>
<td>Traders</td>
<td>0.310</td>
<td>0.567</td>
<td>0.408</td>
<td>0.553</td>
</tr>
<tr>
<td></td>
<td>Currency traders</td>
<td>0.356</td>
<td>0.554</td>
<td>0.421</td>
<td>*0.599</td>
</tr>
<tr>
<td></td>
<td>tb.cv.ct</td>
<td>0.385</td>
<td>0.900</td>
<td>0.499</td>
<td>0.404</td>
</tr>
<tr>
<td></td>
<td>tb.cv.cv</td>
<td>0.393</td>
<td>0.860</td>
<td>0.503</td>
<td>0.388</td>
</tr>
<tr>
<td></td>
<td>tt.cv.ct</td>
<td>0.328</td>
<td>0.882</td>
<td>0.459</td>
<td>0.648</td>
</tr>
<tr>
<td></td>
<td>tt.cv.cv</td>
<td>0.362</td>
<td>0.837</td>
<td>0.448</td>
<td>0.624</td>
</tr>
<tr>
<td>Proposed</td>
<td>cb.cv.ct</td>
<td>0.167</td>
<td>0.883</td>
<td>0.524</td>
<td>*0.570</td>
</tr>
<tr>
<td></td>
<td>cb.cv.cv</td>
<td>0.179</td>
<td>0.832</td>
<td>0.510</td>
<td>*0.554</td>
</tr>
<tr>
<td></td>
<td>ct.cv.ct</td>
<td>0.764</td>
<td>0.626</td>
<td>0.515</td>
<td>*0.557</td>
</tr>
<tr>
<td></td>
<td>ct.cv.cv</td>
<td>0.756</td>
<td>0.606</td>
<td>0.498</td>
<td>*0.540</td>
</tr>
<tr>
<td></td>
<td>cv.cv.ct</td>
<td>0.522</td>
<td>0.573</td>
<td>0.513</td>
<td>*0.547</td>
</tr>
<tr>
<td></td>
<td>cv.cv.cv</td>
<td>0.547</td>
<td>0.564</td>
<td>0.498</td>
<td>*0.529</td>
</tr>
</tbody>
</table>
Significant improvement

- Both on R-P curves and Avg. Prec.
- Most RMTers \rightarrow a single, small, and top-rank community
 - Period A: 29 RMTers \rightarrow 28 + 1
 - Period B: 52 RMTers \rightarrow 50 + 1 + 1
- Some are still difficult to detect
Relatively unsuccessful cases

- Weak for plural RMTer communities
 - Period C: 106 RMTers → 53 + 33 + 19 + 1
 - Period D: 130 RMTers → 80 + 32 + 14 + 2 + 1 + 1

- Need a more intelligent ranking
 - e.g., Combination of ranks (community, character)
 - e.g., Re-ranking based on operators’ judge
Detection of RMTers in MMORPG

- As a ranking problem
- Wholesale arrest thru capturing communities
 - Low exchange rate → division of labor & frequent trade
- Evaluation using actual log data
 - Better performance than separately assessing each char.
 - w/ a room of further improvement
Future work

Technical aspect
- Further investigation into trading network
 - Mixture models [Newman+, 07]
 - Augmentation with other components [Ahmad+, 11]
- Apply state-of-the-art machine learning techniques

Evaluation
- Is arms race really overcome?
 - e.g., Robustness against disposal use of characters
- Application to other MMORPGs