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Abstract

This paper describes a Japanese lexico-
structural paraphrasing engine called KURA,
discussing its underlying architectural and
implementational issues. KURA has several
advantages: (a) it is designed to enable lexico-
structural paraphrasing as an application-
independent task, (b) it is based on the di-
vision of labor between transfer and revi-
sion processes, (c) it is designed to repre-
sent all paraphrasing knowledge uniformly as
a set of declarative lexico-structural transfor-
mation rules, (d) it is efficient enough to be
used for large-scale experiments, and finally
(e) it provides a computational environment
that supports process monitoring, error anal-
ysis, and rule debugging.

1 Introduction

Automated paraphrasing is a sub-field of NLP
that has been receiving increasing attention because
of its potential for a wide range of NLP applications:
machine translation (Shirai et al., 1998; Yoshimi
and Sata, 1999), text generation (Inui et al., 1992;
Robin and McKeown, 1996), authoring/revision
support (Takahashi and Ushijima, 1991; Takeishi
and Hayashi, 1992; Hayashi, 1992), reading assis-
tance (Carroll et al., 1998; Inui, 2001), summariza-
tion (Mani et al., 1999; Nanba and Okumura, 2000),
etc.

Paraphrasing can be primarily viewed as a special
case of translation in the sense that both transform
the wording of a source text into another different
wording, while preserving its meaning as much as
possible. Due to this similarity, one may think that
paraphrasing can be done simply by using state-of-
the-art transfer-based technologies of cross-lingual
machine translation (MT) such as those described
in (Wahlster et al., 2000; Richardson et al., 2001).
However, the matter is not so simple for three rea-
sons:

e While extensive work has been conducted on

cross-lingual translation, little has been done on
paraphrasing from the point of view of computa-

tional linguistics — the nature of paraphrasing is
not yet clear. Paraphrasing may have its own id-
iosyncracies that need to be taken into account
in designing the architecture of a paraphrasing
system.

e While there are many parallel and comparable
corpora available for cross-lingual translation, it
is difficult to collect a large amount of exam-
ples for paraphrasing. This makes it difficult
to use present corpus-based MT techniques for
paraphrasing.

e One promising way to gain insight into the na-
ture of paraphrasing is to conduct empirical ex-
periments using a large-scale corpus. However,
there are few, if any, computational tools avail-
able that support such experiments.

Motivated by these problems, we have devel-
oped a computational environment in which one
can effectively conduct empirical experiments with
a variety of lexico-structural paraphrasing tasks
(paraphrasing, hereafter)! in Japanese. This paper
gives an overview of this paraphrasing engine called
Kura. In Section 2, we first review the already-
known idiosyncratic aspects of paraphrasing and
then propose a three-layered, revision-based model
of paraphrasing. KURA is an instance of the im-
plementation of this model. We describe the in-
ternal structure of KURA focusing on the knowl-
edge representation it uses in Section 3 and the cur-
rently implemented mechanism for process control
in Section 4. We provide information about the in-
stallation of the system and the devices for pro-
cess monitoring and output data management in
Section 5, and conclude the paper in Section 6.

!By lexico-structural paraphrasing we mean
meaning-preserving linguistic transformation, such as
lexical/phrasal replacement, verb alternation, topical-
ization, and sentence aggregation/division, that can
be done without using the associated communicative
context.
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Overall architecture of KURA

2.1 Architectural issues in paraphrasing

In contrast to cross-lingual translation, para-

phrasing has several idiosyncratic aspects that af-
fected our architectural design:

The goal-oriented nature of paraphrasing is more
salient than that of cross-lingual translation;
namely, the output must be adequate accord-
ing to not only (a) the morpho-syntactic well-
formedness and (b) meaning preservation but
also (c) the application-specific purposiveness.
In reading assistance, for example, it is criti-
cal that the paraphrasing of an input sentence
or text? improve its comprehensibility (Inui and
Yamamoto, 2001). The problem here is how to
control paraphrasing to achieve a given purpose
for a given input.

In paraphrasing, the morpho-syntactic informa-
tion of a source sentence should be accessible
throughout the transfer process since morpho-
syntactic transformation in itself can often be
a motivation for or a goal of paraphrasing.
Therefore, approaches such as semantic transfer,
where morpho-syntactic information is highly
abstracted as in (Dorna et al., 1998; Richardson
et al., 2001), do not suit this task. Provided that
the morpho-syntactic stratum is an optimal level
of abstraction for transfer in paraphrasing, one
should recall that semantic-transfer approaches
such as those cited above were motivated mainly
by the need to reduce the complexity of trans-
fer knowledge, which could be unmanageable in
morpho-syntactic transfer. We need, therefore,
to find a way to reduce the complexity of transfer
knowledge while staying at the morpho-syntactic
level.

While the wording of a source sentence changes
completely in cross-lingual translation, it is
largely preserved in most cases of paraphras-
ing. In practice, therefore, a paraphrasing sys-
tem often needs to access either the morpho-
syntactic or the semantico-contextual informa-
tion, and only of a limited part of a source sen-
tence. The problem here is that it is almost al-
ways unpredictable which type of information of
which part is needed in a particular case.

2.2 A three-layered, revision-based para-

CcO

phrasing model

The above considerations have led us to design a
mputational model of paraphrasing that has the

following features (see Figure 1):

2This paper uses sentence and tert interchangeably.

In

fact, KURA is designed to receive and produce a se-

quence of sentences that constitute a text.
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Figure 1: Overall architecture

Three-layered division of labor: It is de-
signed to maximally encapsulate the task
of application-neutral linguistic transformation
from application-specific tasks including problem
identification, paraphrase planning, and purpo-
siveness assessment.

Revision-based morpho-syntactic transfer: It
has a revision component to revise or reject
ill-formed/inadequate paraphrase candidates
produced by the non-deterministic morpho-
syntactic transfer component.

Data-driven control of semantic analysis: It has
a semantic analysis component that can be acti-
vated on demand to carry out various procedural
computational tasks for semantic or contextual
analysis.

We will elaborate on the first two features below.

2.2.1 Three-layered division of labor

The overall architecture is functionally three-

layered:

The interface layer provides an interface be-
tween input/output strings and their internal
representations. In our architecture, all interme-
diate structures used by the components are rep-
resented uniformly as morpho-syntactic depen-
dency structures which can be annotated with
semantic and textual information accordingly.

The application-dependent layer covers subtasks
related to application-dependent purposiveness.



At the source side, it produces a paraphrasing
plan that specifies what class of linguistic trans-
formation should be applied to which part of the
input. At the target side, on the other hand, it
assesses the purposiveness of each paraphrase of
a given set of paraphrase candidates and selects
an optimal one.

The linguistic transformation layer performs
linguistic transformation, the core application-
independent subtask of paraphrasing, which
generates morpho-syntactically well-formed and
meaning-preserving paraphrases from a given in-
put coupled with a paraphrase plan. The current
implementation of KURA focuses particularly on
this layer.

If this division of labor works properly, one should
be able to build a paraphrasing engine that is
reasonably application-independent and can thus
be used for different applications. Although it
is unclear if one can fully eliminate application-
dependent processes in linguistic transformation,
we believe that it is important, at least in the pre-
liminary stage of research, to make a maximum ef-
fort to avoid the confusion between linguistic and
purposive adequacy of a paraphrase.

2.2.2 Revision-based
transfer

morpho-syntactic

Our model carries out linguistic transforma-
tion at the morpho-syntactic stratum. As noted
in Section 2.1, one problem we must address in
morpho-syntactic transfer is how to reduce the com-
plexity of transfer knowledge. Let us consider an
example:

(1) s.0000000000

ringo (apple) shika (except) tabe (to eat) nai
(not)
(I eat nothing but apples.)

t.0o0oooooogoon
taberu (to eat) no-wa (thing-TOP) ringo (ap-
ple) dake (only) da (COPULA)
(Al T eat is apples.)

Generalizing from this example, one can come up
with syntactic transfer pattern:

()NOO VOO - vOOoNOOO
N shika (except) V nai (not) - V no-wa (thing-
TOP) N dake (only) da (COPULA)

However, this rule does not specify what to do to
paraphrase such sentences as (1). For example, it
does not take into account verb conjugation. The
form of an input verb must changes depending on
the context: in (1), “tabe (to eat)” must be trans-
formed into “taberu (to eat)”.

The next example illustrates how easily the situ-
ation can become even more complicated:

(3) s.000000000O0OO0O0OOOO0OOO
kare (he) wa (TOP) oishii (delicious) ringo
(apple) shika (except) tabe (to eat) taku (to
want) nakat (not) ta (PAST)

(He wanted to eat nothing but delicious ap-
ples.)
t.+x000000000000000000
RN
kare (he) wa (TOP) tabe (to eat) taku (to
want) no-wa (thing-TOP) oishii (delicious)
ringo (apple) dake (only) da (COPULA) ta
(PAST)
rr000000000000000004d0
0doo
kare (he) ga (NOM) tabe (to eat) takat (to
want) ta (past) nmo-wa (thing-TOP) oishii
(delicious) ringo (apple) dake (only) dat
(copuULA) ta (PAST)
(All he wanted to eat was a delicious apple.)

A naive application of rule (2) to sentence (3s)
produces (3t), which has a topicalization error (“
O wa”), a tense-related error (“O 0 taku”) and
two verb-conjugation errors — the desirable output
would be (3r). However as one can imagine, incor-
porating all such factors into a transfer rule would
invariably make it very complicated.

Our solution to this problem is to (a) leave the
description of each transfer pattern underspecified
as in (2) and (b) implement the knowledge about
linguistic constraints that are independent of a par-
ticular transfer pattern separately from the transfer
knowledge. There should be a wide range of such
transfer-independent linguistic constraints. Con-
straints on morpheme connectivity, verb conjuga-
tion, word collocation, and tense and aspect forms
in relative clauses are typical examples of such con-
straints. We call the description of such linguistic
knowledge a language model (or a language gener-
ation model). If a transfer rule is left underspec-
ified, it is likely to produce morpho-syntactically
ill-formed or semantically inadequate paraphrases.
To cope with this problem, we introduced a revision
component that uses the language model to revise
and reject faulty results of transfer.

In contrast to existing transfer-based cross-
lingual MT frameworks, our revision-based ap-
proach can be seen as an effort to maximally en-
hance the role of generation and post-editing in or-
der to maximally reduce the load of transfer. The
advantages are as follows:

e The incorporation of the revision component will
reduce the redundancy and thus the complex-
ity of the transfer knowledge while leaving the
level of transfer at the morpho-syntactic stra-
tum. This conclusion is based on our empirical
observation that each single piece of the knowl-



edge of a language model (e.g., collocation con-
straints for a pair of words) is likely to be asso-
ciated with more than one transfer pattern.

e OQur approach can be better integrated with
emerging corpus-based approaches to the acqui-
sition of transfer patterns (Barzilay and McK-
eown, 2001; Sekine, 2001) since the ability to
revise transfer results will make the system tol-
erant of the deficiencies of acquired knowledge.

3 Knowledge representation
3.1 Data structure

In KURA, the internal representations used by all
the components have a uniform data structure — a
morpheme-based dependency structure (MDS). An
MDS is a dependency tree each of whose nodes cor-
responds to a morpheme (lexical entry) with var-
ious morpho-syntactic and semantic annotations.
As suggested by previous works on transfer-based
MT (Meyers et al., 1996; Lavoie et al., 2000), the
dependency-based representation has the advantage
of facilitating syntactic transformation operations.

3.2 Uniform representation of transfer and
revision knowledge

The linguistic transformation component uses
both transfer knowledge (a transfer model) and re-
vision knowledge (a language model). In KURA,
both are represented uniformly as a set of MDS
rewriting rules.

3.2.1 Transfer rules

Previous works on transfer-based MT sys-
tems (Lavoie et al., 2000; Dorna et al., 1998)
and alignment-based acquisition of transfer knowl-
edge (Meyers et al., 1996; Richardson et al., 2001)
have proven that transfer knowledge can best
be represented by declarative structure mapping
(rewriting) rules each of which typically consists of
a pair of source and target partial structures. We
adopt a similar type of representation: we represent
transfer knowledge as a set of MDS rewriting rules
(SR rules) in the following form:

(4) sr_rule(id, transfer_class, name, s-mds, t_mds) .

which denotes that a partial MDS that matches
s_mds can be replaced with the instantiated tar-
get MDS specified by t_mds. An example of an SR
rule is presented in Figure 2, which also shows a
snapshot of the application of the rule to sentence
(3s).

3.2.2 Variably-lengthened morpheme

quences (VMSs)

Recall here that we are trying to achieve lin-
guistic transformation at the morpho-syntactic stra-
tum. This requires devising additional means to en-
able flexible pattern matching of morpho-syntactic
structures. For example, one may want to be able

se-

to apply rule (108) in Figure 2 equally to each of
the following input sentences:

(5) . 0000000000

ringo (apple) shika (except) tabe (to eat) nai
(not)
(I eat nothing but apples.)

b.0000000 00000
ringo (apple) shika (except) tabe (to eat)
sase (to allow) nai (not)
(I do/will not allow someone to eat anything
but apples.)

c. 00000000000 OOO
ringo (apple) shika (except) tabe (to eat)
sase-te (to allow) i (PRES-PERFECT) nai
(not)
(I have not allowed someone to eat anything

but apples.)

This requirement has led us to enhance the express-
ibility of SR rules by introducing the notion of a
variably-lengthened morpheme sequence (VMS). An
example of a VMS can be found at node X2 in
Figure 2, where POS label vms_aux_verb denotes
a subclass of VMSs. Each subclass of VMSs can be
defined by a rule editor in terms of a regular expres-
sion of morpheme sequence patterns as follows:

(6) a.def_vms(vms_aux_verb,
[(aux_verb,"*")]).

b. def_vms (vms_postp,
[(postp,"*"),(comma,"*")]).

3.2.3 Revision rules

Compared with the representation of transfer
knowledge, the representation of revision knowledge
has a wider range of options. For example, one may
develop a blackboard model where revision knowl-
edge will be decomposed and distributionally as-
signed to procedural revision experts. Alternatively,
one may devise a general procedure to consolidate
an ill-formed transfer output with a lexico-grammar
that specifies linguistic constraints, perhaps in way
analogous to robust parsing of ill-formed sentences
as in (Mellish, 1989). While understanding the ad-
vantages of the approaches (particularly of the sec-
ond one), we adopted yet another approach: to rep-
resent all revision knowledge as a set of SR rules
expressed by the same formalism as transfer rules.

To use the SR rule form for revision knowledge,
we slightly modified it:

(7) a.sr_rule(id,revision_class,name,
s_mds,t_mds) .
b. sr_rule(id,revision_class,name,
s_mds,must ([eomds,...,ecmds,])) .

The rule of form (7a) is used to revise an ill-formed
or inadequate transfer output; it denotes that a
partial MDS that matches s_mds must always be
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replaced with the instantiated target MDS, t_mds.
The rule of form (7b) is, on the other hand, used
to reject a fatally ill-formed or inadequate trans-
fer output. It denotes the constraint that if s_mds
holds for a given MDS then either e-mdsy, ..., or
e_mds, must also hold; in other words, if

s.mds A (e-mdsy V...V e-mdsy,)

holds for a given MDS then it must be rejected.
You will find an example of a revision rule later in
Section 3.3.1.

Note that, while the form of revision rules is
the same as that of transfer rules, the semantics
is slightly different. Each transfer rule corresponds
to a different version of paraphrasing; that is, dif-
ferent transfer rules produce different paraphrases.
In revision, on the other hand, every revision rule is
obligatorily applied whenever applicable, in manner
analogous to rule application in forward-chaining
production systems. We will describe an effec-
tive controlling method for rule application later
in Section 4. Revision rules may conflict with one
another; that is, the result of a sequence of rule
applications may differ depending on the order of
application. We will address the problem of con-
flict resolution as a subject for our future work in
Section 6.
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This rule-based declarative knowledge represen-
tation has an advantage in that it allows us to edit
the revision knowledge simply by adding, deleting,
or revising individual rules. Given the fact that
we know very little about the kinds of knowledge
needed in the revision process, we initially need
to try to accumulate a sufficient number of proto-
typical instances of revision knowledge in a error-

driven manner. To carry out such a trial-and-error-
based exploration, we need to develop mechanisms
for knowledge editing, even though this may force
us to sacrifice, to a certain extent the expressibility
of knowledge representation.

3.3 Layered rule representation

The form of SR rules is so designed as to express
different types of transfer and revision knowledge.
Its expressibility is, however, not powerful enough
to serve as an implementation language for proce-
dural semantic analysis and application-dependent
processing. SR rules are not simple enough to
be easily handcrafted, either. Motivated by these
two deficiencies of the SR rule form, we developed
three-layered knowledge representation as shown in
Figure 3. To provide an interface between the lay-
ers, KURA has (a) a rule translator that automati-
cally translates each simplified SR rule (SSR rules)
into the corresponding SR rule and (b) a rule com-
piler that automatically compiles each SR rule into
the corresponding sequence of MDS processing op-
erators (SP operators). By introducing the SSR rule
and SP operator layers, one can handcraft transfer
and revision rules at a sufficiently abstract level,
while being able to implement arbitrary procedural
operations for MDSs.

In the rest of this subsection, we will elaborate on
each of the newly introduced layers: SSR and SP.

3.3.1 Simplified SR (SSR) rules

The form of SSR rules is designed to facilitate the
task of handcoding SR rules. For example, to define
SR rule (108) in Figure 2, a rule editor needs only
to specify its simplified form as in (8):




Simplified SR (SSR) rules trandlation

MDS Rewriting (SR) rules

compilation

MDS Processing (SP) operators

Implementation language

Figure 3: Three-layered knowledge representation

)NOOvO-00 ->vOoNOOOO
N shika V shinai -> V no ha N dake da.

The advantages of introducing the SSR rule layer
should be obvious. The SSR rule form allows a rule
writer to edit rules with an ordinary text editor,
which makes the task of rule editing much more ef-
ficient than providing her/him with a GUI-based
complex tool for editing SR rules directly. It also
has the advantage of “readability”, which is partic-
ularly important in group work.

The idea is that most specifications of an SR rule
can usually be abbreviated if the means to automat-
ically complement it are provided. We use a parser
and macros to do this: the rule translator comple-
ments an SSR rule by macro expansion and parsing
to produce the corresponding SR rule specifications.
We will demonstrate this through examples.

N and V in (8) are examples of macros. Each
macro is defined as in (9), where symbol M denotes
a general morpheme that can be annotated with
arbitrary features:

(9) a.N -> M(noun).
b.V -> M(verb).

Symbol “-” as found in (8) is also a macro that is
expanded into a VMS (see 3.2.2 above) by a set of
context-sensitive expansion rules as in (10).

(10) a. noun-* -> vms_postp.
b. verb-* -> vms_aux_verb.

C. ¥—eos —-> vms_aux._verb.

Given an SSR rule, the translator first expands
the macros used in it by applying macro definitions.
For example, rule (8) is transformed into interme-
diate representation (11):

(11) Mi(noun) O O M2(verb) M3(vms_aux_verb)
O O -> M2(verb) M3(vms_aux_verb) O O
Mi(noun) OO O .

The translator then parses the source and target
parts of the result separately, and finally produces
the full specifications of the corresponding SR rule
(see Figure 2 for the current example). To parse
SSR rules, we use the same parser as that used
to parse input sentences in the interface layer (see
Figure 1). This also improves the efficiency of rule
development because it significantly reduces the
burden of maintaining the consistency between the
POS-tag set used for parsing input and that used

for rule specifications. This is also an important
advantage of introducing the SSR rule layer.

In rule translation, the parser can produce a
wrong parse without any additional control. To
cope with parsing errors, the SSR rule form allows
a rule editor to annotate SSR rules to fully control
parsing results. An example can be seen in rule
(12):

(12) N1 M(cnctprt; lex:0) [N20 N3] -> ...

where M(cnct_prt; lex:0) forces “0O07 to be an-
alyzed as cnct_prt (connective particle), and the
square brackets impose constraints on the parse tree
so that “N1 0” depends on “N3” (the head of “N2
0 N37).

The current implementation of the SSR rule form
also allows other types of annotation including the
following:

e Semantic condition
(13) N(sem_class:person) -> ...
e Negation of feature values
(14) N(sem_class!:person) —> ...
e Negation of the existence of morphemes
(15 N00<000> -> NOO.
e Disjunction
(16) N1-0 N2-0 0000
-> N1-O N2-{0,0000 }000.
e Rejection (The rules below are equivalent.)
(17) a.0000 VOO
> must(DO00OVO-00).
b. 0000 VO-<O0O> -> reject.

3.3.2 MDS processing (SP) operators

In the current implementation of KURA, the in-
ternal data structure of MDSs is totally encapsu-
lated, allowing access only through a small fixed set
of SP operators. Several frequently used SP opera-
tors are listed in Figure 4.

The roles of SP operators can be summarized as
follows:

e SP operators provide an interface between the
SR rule layer and the implementation layer; each
SR rule is automatically compiled into a se-
quence of SP operators, which is then interpreted
by the system. Figure 5, for example, shows the
process and the result of compiling the SR rule
given in Figure 2. As illustrated in Figure 5,
the result of rule compilation is still reasonably
“readable” ; which significantly facilitates process
monitoring and knowledge debugging.

e The encapsulation of the low-level internal data
structure of MDSs allows a user to stay at an
abstract level even in implementing the semantic
analysis component.

e The encapsulation also allows the low-level im-
plementation of SP operators to be performed



match(+MOR1, +MOR2): is true iff node MOR1 is unifi-
able with another node MOR2.

exist (+MOR, +MDS): is true iff a node that is unifi-
able with MOR exists in MDS.

depend (?MOTHER, +VMS, 7DAUGHTER): is true
iff two nodes corresponding to MOTHER and
DAUGHTER respectively are in the mother-
daughter relationship via a VMS corresponding
to VMS.

feature (+MOR, +PATH, ?VALUE):is true iff the
value of a feature specified by PATH of node MOR
is VALUE.

disown (+MOR): removes the link between node MOR
and its mother.

replace(+0OLD_MOR, +NEW_MOR): replaces
OLD_MOR with node NEW_MOR.

adopt (+MOR, +MOTHER): adds node MOR as a daugh-
ter of mother node MOTHER.

change_feature (+MDS, +PATH, +VALUE):
destructively substitutes a value VALUE into a
feature slot specified by MDS and PATH.

node

Figure 4: SP operators

independently of the knowledge and algorithms
described at higher levels of abstraction.

4 Process control

This section addresses the issues of process con-
trol. Because the current version of KURA is
not equipped with any devices for application-
dependent processing, we are not yet ready to dis-
cuss which transfer rule should be applied when and
where. Instead, in this section, we first describe
three modes of rule application control designed to
conduct various experiments (Section 4.1), and then
present two simple techniques we have implemented
to improve the process efficiency. These techniques
are (a) data-driven rule retrieval (Section 4.2) and
(b) optimization in rule compilation (Section 4.3).

4.1 Rule application mode

The current version of KURA provides three
modes of rule application control:

e Single: For each input sentence, the system tries
to apply each rule of a given set of transfer rules.

e Best: For each input sentence, the system re-
cursively paraphrases it in the best-first order
until no transfer rule is applicable to the result.
The current version of KURA simply gives pri-
ority to transfer rules according to the order of
their loading.

e Multi: For each input sentence, the system tries
to apply all permutations of transfer rules.

In any mode, the revision component checks the re-
sulting sentence every time a transfer rule is applied.

The Single mode is useful for debugging each
transfer rule independently, whereas the Best (or
Multi) mode can be used for checking the effects of

rule editing
SSR rule
NOO VOO ->vOoNOO O.
Nshika Vnai -> V nohaN dakeda,
(notV except N)  (itisonly N that V)

translation

SRrule

sr_rule(108, negation, "N shikaV nai -V no haN dake da", MDS1, MDS2)

(Figure 2)

i compilation

SP operator sequence

sp_rule(108, negation, RefNode) :-
match(RefNode, X4=[pos:postp,lex:shi ka]),
depend(X3=[pos:verb], empty, X4),
depend(X1=[pos:aux_verb,lex: nai ],

X2=[pos:vms_aux_verb], X3),

depend(X4, empty, X5=[pos:noun]),
replace(X1, X6=[pos:aux_verb,lex:da ),
substitute(X5, X12=[pos:noun)),
move_dtrs(X5, X12),
substitute(X3, X10=[pos:verb]),

Figure 5: Rule compilation

combining more than one transfer rule. Since KURA
is designed to manage all results of rule applications
using a relational database as we will mention later,
users can easily browse through and analyze these
results with an appropriate user interface.

4.2 Data-driven rule application

If you try to apply a huge number of transfer and
revision rules to a large-scaled corpus, the computa-
tional efficiency will be an issue. To improve the ef-
ficiency of rule retrieval, we have so far implemented
a simple mechanism of indexing transfer and revi-
sion rules as illustrated in Figure 6.

First, for each rule, its index node is chosen
to be the most specific (i.e., the most discrim-
inative) morpheme node of the source parts of
the rule. Here a lexicalized node is considered
more specific than a lexically unbound node. A
node anchored with a less frequent lexical entry
is considered even more specific. For rule (108)
given in Figure 2, for example, node X4 is cho-
sen as an index node. Then, given a set of tuples
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Figure 6: Data-driven rule retrieval

(index_key,rule_id,rule_class), where indez_key is a
string deterministically computed from the original
index node, one can straightforwardly make an in-
dex table as shown in Figure 6. Finally, in rule re-
trieval, the system traverses a given MDS, and for
each node it visits, it refers to the index table to
retrieve a set of rules that may match the current
node.

This method can be improved in several direc-
tions. For example, one may put restrictions on
the range of traversal of a given MDS in the re-
vision process, to avoid unnecessary application of
revision rules to unchanged subparts of the MDS.
One may also improve the rule indexing method by
using, for example, node n-gram patterns or deci-
sion trees (Utsuro, 1995). Improving the indexing
method will be the subject of our future work.

4.3 Optimization in rule compilation

We have also implemented an optimization tech-
nique for rule compilation that improves the compu-
tational efficiency of rule retrieval in manner analo-
gous to that of rule optimization techniques devel-
oped for production systems.

Let us reconsider rule (108) given in Figure 2.
The rule matching process starts with the index
node:

(18) match(ReferenceNode,
X4=[pos:postp,lex:shikal) .

Then the question is in which order the subse-
quent matching operations should be carried out.
In Figure 2, giving priority to checking the ances-
tors of X4 up toward another lexicalized node, X1,
referred to by the third operator in Figure 5 is ob-
viously a better choice than checking X5 first, since
X5 will match any noun and is therefore much less
discriminative thanX1.

Likewise, the order of matching operations can
be individually optimized for each rule based on the
following heuristics:

e Nodes whose mother or daughter has already
been checked have priority.

e Operations checking for lexical conditions have
priority. In particular, less frequent words should
be given priority.

e Operations checking for semantic conditions
should be delayed because they may require a
time-consuming procedure of semantic analysis.

5 Installation and user interface

The backbone of the current version of KURA is
implemented on a Prolog-like typed feature unifi-
cation system called LiLFeS (Makino et al., 1997);
that is, we use LiLFeS in the implementation layer
in Figure 3. In this layer, MDSs are represented
as a typed feature structure, and each SP oper-
ator is implemented as a LiLFeS program. For
morpho-syntactic analysis and rule translation, we
use Chasen (Asahara and Matsumoto, 2000) and
Cabocha (Kudoh and Matsumoto, 2000).

To give the reader an idea about the time effi-
ciency of the current system, we conducted a small
experiment. First, we prepared 768 pre-compiled
transfer rules associated with a negative expression
like the one in rule (8), and 65 pre-compiled re-
vision rules. Next, we collected 38,383 pre-parsed
input sentences from the Kyoto corpus (Kurohashi
and Nagao, 1997). Then, we put them into the sys-
tem running on a 400MHz Sparc processor in the
Single rule application mode. The system was told
to try all the combinations of 38,383 sentences by
using 768 transfer rules. As a result, the system
produced 8,619 paraphrases. The time consumed
for this task was no more than 110 minutes.

KURA also provides a computational environment
that facilitates process monitoring, error analysis,
and rule debugging. Given input sentences and a
rule set, KURA produces a set of XML log files, each
of which is then converted to be imported into a re-
lational database (RDB). Figure 7 shows a snapshot
of our error analysis using commercial RDB soft-
ware, where one can see (a) a source, intermediate,
and target sentences (on the left of the background
window), (b) the list of rules applied in the current
paraphrasing instance (in the middle), (c¢) various
tags manually annotated for evaluation and error
analysis (on the right), and (d) a list of paraphras-
ing instances where a certain rule is applied (in the
foreground window).

6 Conclusion

We presented our new lexico-structural para-
phrasing engine KURA, discussing its underlying
architectural and implementational issues. KURA
is characterized by its three-layered and revision-
based architectural design and rule-based uniform
knowledge representation. KURA is designed to sup-
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Figure 7: A snapshot of error analysis

port large-scaled experiments on rule-based para-
phrasing, which we hope will help researcher explore
the nature of paraphrasing.

Our revision-based paraphrasing model is closely
related to the SANDGLASS MT model (Yamamoto et
al., 2001), which incorporates paraphrasing mod-
ules into both the source and target monolingual
processors to maximally reduce the burden on the
transfer module. Our claim is that paraphrasing
in itself is so complicated that we need to devise a
method to reduce the load of transfer. Our revision-
based model is an attempt to achieve this goal.

KURA is still in the preliminary stage of devel-
opment; it needs to be made more sophisticated in
various directions. First, we need to address the
issue of conflict resolution. The constraint-based
approach to sentence planning proposed by Beale
et al. (1998) may be a good start in this direction.
Second, we would like to devise a more efficient
method for rule indexing; here we can learn much
from the work done by Utsuro (1995) and Bohnet
and Wanner (2001). Third, the expressibility of
transfer rules also needs to be enhanced to enable
handling more complicated combinations of transfer

patterns (Inui and Nogami, 2001). Finally, it is also
important to try to link the work on the system with
the work on the application-dependent layer (Chan-
drasekar et al., 1996; Inui and Yamamoto, 2001).

The system is available for free at

www.pluto.ai.kyutech.ac.jp/plt/inui-lab/tools.

It can work wherever LiLFeS, Chasen, and
Cabocha, which are all available free of charge,
work properly.
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