

# Unsupervised Extraction of Partial Translations for Neural Machine Translation

Benjamin Marie and Atsushi Fujita {bmarie,atsushi.fujita}@nict.go.jp

National Institute of Information and Communications Technology (NICT), Kyoto, Japan

## Key Points

## Assumptions

- Partial translations can be extracted from monolingual data
- Prior translation knowledge can bias newly extracted knowledge

## Method

- 1. Extraction: only using an unsupervised phrase table
- 2. Post-processing: masking untranslated tokens

## MOTIVATION

## Generation vs. extraction of synthetic bilingual data

- Generation of back-translations (Sennrich+, 16) : synthetic bilingual data with a synthetic source side
- Extraction of partial translations: synthetic bilingual data in which both sides are fluent sentences

## EXAMPLE OF A PARTIAL TRANSLATION

• Application: training data for NMT

## Using partial translations in NMT

- Better translation quality for low-resource settings
- Complementary to back-translations as NMT training data



## APPROACH: THE WHOLE FRAMEWORK

1. Step by step partial translation extraction



## EVALUATION: EXPERIMENTS IN NMT

#### Data

- Language pairs: English-German, English-Turkish, Bengali-Malay
- Bilingual training data (low-resource conditions):
  - en-de and en-tr: 100k sentence pairs from WMT18
  - bn-ms: 18k sentence pairs from ALT project (Riza+, 16)
- Monolingual data for phrase table induction and partial translations extraction:
  - Resouch-rich languages: 239M, 237M, and 104M lines, for En-

#### partial translations

- Induce a phrase table from monolingual data (Marie+, 17; Artetxe+, 18; Lample+, 18)
- Make a set of sentence pairs through the Cartesian product of the sets of sentences in source and target monolingual data
- Find the best target sentence for each source sentence
  - Filter sentence pairs given their coverage by the phrase table
  - Score the remaining sentence pairs with phrase-based forced decoding (PBFD)  $_{\rm (Zhang+,\ 17)}$
- Keep the n best sentence pairs with the highest PBFD score
- 2. For training NMT
  - Mask unaligned tokens found by PBFD on the source side of partial translations
  - Resource-rich scenario: mix the resulting partial translations with back-translations and the original bilingual data
  - Low-resource scenario: mix the resulting partial translations with the small original bilingual data

glish, German, and Turkish

 Low-resource languages: 5.3M and 4.6M lines for Bengali and Malay

## NMT systems

- baseline: trained only using the original bilingual training data
- backtr: same data as baseline mixed with 100k back-translations
- partial: same data as baseline mixed with 100k partial translations

#### Results

| Training data  | en→de | $en \rightarrow tr$ | bn→ms |
|----------------|-------|---------------------|-------|
| baseline       | 7.1   | 9.3                 | 6.1   |
| backtr         | 9.1   | 11.4                | 5.4   |
| partial        | 9.9   | 10.4                | 5.5   |
| backtr+partial | 11.5  | 11.6                | 4.5   |

- backtr and partial are complementary (best configuration)
- Partial translations can be more useful than back-translations (en-de)

• For bn-ms (low-resource), both backtr and partial fail

#### ANALYSIS

#### Phrase table

| Training data               | $en \rightarrow de$ | bn→ms             |
|-----------------------------|---------------------|-------------------|
| baseline                    | 7.1                 | 6.1               |
| unsupervised<br>surpervised | <b>9.9</b><br>9.4   | 5.5<br><b>6.3</b> |

• More useful partial translations with an unsupervised phrase table

| Maski | ing vs. droppin | ng                  |      |
|-------|-----------------|---------------------|------|
|       | Training data   | $en \rightarrow de$ | en→t |
|       | baseline        | 7.1                 | 9.3  |
|       | original        | 6.2                 | 7.7  |

dropped

partial

• Masking unaligned tokens performs better than dropping them

8.8

9.9

10.0

10.4

## With large parallel data

| para. | backtr        | partial       | en→de       | $en \rightarrow tr$ |
|-------|---------------|---------------|-------------|---------------------|
| all   |               |               | 26.2        | 13.6                |
| all   | $1\mathrm{M}$ |               | 27.7        | 18.6                |
| all   |               | $1\mathrm{M}$ | 26.4        | 14.7                |
| all   | $1\mathrm{M}$ | $1\mathrm{M}$ | <b>28.2</b> | 19.0                |

• Back-translations are more useful

• backtr and partial are complementary