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Abstract

In encoder-decoder based sequence-to-sequence modeling,
the most common practice is to stack a number of recurrent,
convolutional, or feed-forward layers in the encoder and de-
coder. While the addition of each new layer improves the se-
quence generation quality, this also leads to a significant in-
crease in the number of parameters. In this paper, we propose
to share parameters across all layers thereby leading to a re-
currently stacked sequence-to-sequence model. We report on
an extensive case study on neural machine translation (NMT)
using our proposed method, experimenting with a variety of
datasets. We empirically show that the translation quality of
a model that recurrently stacks a single-layer 6 times, despite
its significantly fewer parameters, approaches that of a model
that stacks 6 different layers. We also show how our method
can benefit from a prevalent way for improving NMT, i.e.,
extending training data with pseudo-parallel corpora gener-
ated by back-translation. We then analyze the effects of re-
currently stacked layers by visualizing the attentions of mod-
els that use recurrently stacked layers and models that do not.
Finally, we explore the limits of parameter sharing where we
share even the parameters between the encoder and decoder
in addition to recurrent stacking of layers.

Introduction

Sequence-to-sequence (seq2seq) learning (Sutskever,
Vinyals, and Le 2014) allows for end-to-end training of a
single neural model that can transform an input sequence to
another. A typical seq2seq model consists of an encoder and
a decoder where the encoder converts the input sequence
into a sequence of continuous space vectors and the decoder
converts these vectors into a target sequence. One of the
most commonly followed practices in sequence-to-sequence
modeling is the stacking of multiple recurrent,! convolu-
tional, or self-attentional feed-forward layers in the encoders
and decoders with each layer having its own parameters.
It has been empirically shown that such stacking leads to
an improvement in performance, especially in resource-rich
scenarios. However, it also increases the size of the model
by a significant amount. The search for compact seq2seq
models with performance comparable to their bulkier
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counterparts has led to the development of knowledge
distillation approaches (Hinton, Vinyals, and Dean 2015;
Freitag, Al-Onaizan, and Sankaran 2017). In this approach,
teacher models with a large number of parameters are first
trained and then a child model with significantly fewer
parameters is trained to mimic the teachers. As a result, a
single child model has been shown to perform as well as the
ensemble of many parent models.

We propose an alternative solution where we attempt to
reduce the sizes of the parent models themselves without an
appreciable loss of performance. We thus argue the follow-
ing research question:

Is it really necessary to introduce new parameters when
stacking layers in an sequence-to-sequence model?

In this paper, we try to answer this question by proposing
to reduce the number of model parameters via parameter
sharing across stacked layers. To this end, we take up a case
study of neural machine translation (NMT) (Cho et al. 2014;
Bahdanau, Cho, and Bengio 2015), which is one of the most
popular applications of seq2seq modeling. NMT allows for
end-to-end training of a translation system without needing
to deal with word alignments, translation rules, and com-
plicated decoding algorithms, that are integral to statistical
machine translation (SMT) (Koehn et al. 2007).

We modify the original NMT architecture so that the same
parameters are used across all stacked layers, i.e., recur-
rently stacking (RS)? of layers, as illustrated in Figure 1.
As a result, our recurrently stacked NMT (RS-NMT) model
has the same size of a single-layer NMT model. This pa-
per reports on our extensive study on our RS-NMT model.
To show the effectiveness of RS-NMT, we conducted trans-
lation experiments using five different datasets, including
four for the Japanese—English (ALT, KFTT, GCP, and AS-
PEC) and one for the Turkish-English (WMT) language
pairs, and have observed, for example, that our RS-NMT
model with 6 times of recurrence gives results approach-
ing that of a 6-layer vanilla NMT model which does not
use any recurrences. We expand our experimental settings
to include back-translated corpora (Sennrich, Haddow, and
Birch 2016a) and show that our method further benefits from
such additional data, demonstrating the potential capacity

RS can mean Recurrently Stacked or Recurrent Stacking both
of which have the same implication.
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Figure 1: Vanilla layer stacking (left) vs recurrent layer
stacking (right). In case of the Transformer NMT model,
a layer comprises self-attention, cross-attention (decoder
only), and feed-forward sub-layers which can include resid-
ual connections and layer normalization.

of RS-NMT models. We also make an analysis on the be-
havior of the attention mechanism of RS-NMT models; our
visualization reveals intriguing characteristics of RS-NMT
models. Furthermore, we explore limits of parameter shar-
ing and show that sharing the RS layer parameters between
the encoder and the decoder negatively affects the transla-
tion quality. However, without RS, such sharing does not
have any negative effects on translation quality.
The contributions of this paper are as follows:

Primary Contribution We propose a novel modification to
the NMT architecture where parameters are shared across
layers, i.e., RS-NMT.

Secondary Contribution Through visualizing the atten-
tions across different layers of RS-NMT models, we ana-
lyze them to gain insight into the working of RS-NMT. In
doing so, we also gain an understanding of the adaptive
power of the attention mechanism.

To the best of our knowledge, this is the first work that
shows that it is possible to reduce the NMT model size by
sharing parameters across layers and yet achieve results ap-
proaching that of a model that does not share parameters
across layers. Although we have so far used the Transformer
(Vaswani et al. 2017) architecture, our method is theoreti-
cally architecture independent. Our results will have a direct
impact on general sequence-to-sequence (seq2seq) model-
ing and knowledge distillation approaches because it can
lead to extremely compact seq2seq models.

Parameter Sharing in NMT

NMT models usually consist of an encoder and a decoder.
The encoder comprises an embedding layer for the source
language and NV stacked transformation layers. The decoder
consists of an embedding layer and a softmax layer for the
target language along with M stacked transformation lay-

ers, where M is often set to /N. The most common way of
sharing parameters in NMT models is to use a shared source-
target vocabulary and then use the same parameters for the
encoder-decoder embeddings and the decoder softmax. On
top of them, we propose to perform an additional level of
sharing: using the same parameters across the stacked layers
in a recurrent fashion.

Figure 1 illustrates our approach. The left-hand side
shows the vanilla stacking of N layers where each layer in
the neural network has its own parameters. The right-hand
side shows our approach of stacking N layers where the
same parameters are recurrently used for all layers. In the
case of the Transformer model, each layer consists of self-
attention, cross-attention (decoder only), and feed-forward
sub-layers with layer normalization and residual connec-
tions for each sub-layer. Note that in RS-NMT we simply
feed the output of a layer to itself. As such, the first input
to the RS-layer is the word embedding and all subsequent
inputs are the outputs of the RS-layer. This means that an
RS-NMT model has the same number of parameters as a 1-
layer vanilla NMT model.

Assume that X is the input to the encoder or the de-
coder consisting of N layers. Let Y be the output of the top-
most encoder or decoder layers. Let L; be the ¢-th layer and
L;(X) indicates that L; processes X and produces a hidden
representation. Eq. (1) shows the hidden layer computation
of a 6-layer vanilla NMT model. In contrast, as shown in
Eq. (2), a 6-layer RS-NMT model uses only one layer.

Y = Le(Ls(La(L3(L2(L1(X)))))) (D

Y = Li(L1 (L1 (L1 (L1 (L1(X)))))) 2)
As a result of this parameter sharing, the resultant neural
model is technically a single-layer model in which the same
layer is recurrently stacked /V times. This leads to a massive
reduction in the size of the model. Recurrently stacking of
layers causes the model to revise the hidden states and leads
to more complex representations that should help in improv-
ing translation quality.

Experimental Settings

In this section we explain all our experimental settings that
we followed in order to explore the outcome of RS-NMT
with the Transformer model. Specifically, we trained and
evaluated the following two types of NMT models.

Vanilla NMT: 2-layer and 6-layer models without any
shared parameters across layers.

Recurrently Stacked NMT (RS-NMT): 1, 2, 3, 4, 5, and
6-layer models with parameters shared across all layers.

Datasets and Languages

We evaluated the impact of our proposed method us-
ing five datasets. For our Japanese—English (Ja-En) trans-
lation for both directions, we used the Asian Language
Treebank (ALT) parallel corpus® (Thu et al. 2016), the
Global Communication Plan (GCP) corpus* (Imamura and

3http://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/
“The splits provided by Imamura, Fujita, and Sumita (2018).



Langs | Dataset | Train | Dev | Test | Vocab Steps

ALT 18K | 1000 | 1018 8k 40k
Ja-En GCP 400K | 2000 | 2000 16k | 60k/120k
a- KFTT | 440K | 1166 | 1160 8k 160k
ASPEC | 1.50M | 1790 | 1812 | 32k 400k
3007 50k
Tr-En | WMT | 208K | 3000 3010 16k 4 GPUs

Table 1: Datasets and model settings.

Sumita 2018), the Kyoto free translation task (KFTT) cor-
pus,’ and the Asian Scientific Paper Excerpt Corpus (AS-
PEC)® (Nakazawa et al. 2016). We also experimented with
Turkish—English (Tr-En) language pair using the WMT
2018 corpus.” We used newstest2016 for development, and
newstest2017 (test17) and newstest2018 (test18) for testing.
Table 1 gives the number of parallel sentences for all the
datasets.

We tokenized the Japanese sentences in ALT, KFTT, and
ASPEC corpora using the JUMAN® (Kurohashi et al. 1994)
morphological analyzer. We tokenized and lowercased the
English sentences of these corpora using the tokenizer.perl
and lowercase.perl scripts in Moses.” The GCP corpus was
available to us in a pre-tokenized and lowercased form. We
did not tokenize the Turkish-English data in any way.!?

Implementation and Model Settings

We implemented our method on top of an open-source
implementation of the Transformer model (Vaswani et al.
2017) in the version 1.6 branch of tensor2tensor.!! We chose
the Transformer because it is the current state-of-the-art
NMT model but our approach of sharing parameters across
layers is independent of implementation and model. For
training, we used the default model settings corresponding
to transformer_base_single_gpu in the implementation and
to base_model (Vaswani et al. 2017), except the number of
sub-words, training iterations, and number of GPUs. These
numbers vary as we train the models to convergence.

We used the tensor2tensor internal sub-word segmenter
for simplicity. The details of sub-word vocabularies and
training iterations are in Table 1. Note that for GCP task,
we chose the vocabulary size used by Imamura and Sumita
(2018), and trained English-to-Japanese model for 60k itera-
tions whereas we trained for 120k steps for the reverse direc-
tion. We used a joint'? vocabulary and 4 GPUs for training
the models only for the WMT dataset.

We averaged the last 10 check-points and decoded the
test set sentences with a beam size of 4 and length penalty
of a = 0.6 for the KFTT Japanese-to-English experiments

Shttp://www.phontron.com/kftt

SWe used the cleaner half of this corpus.

Thttp://www.statmt.org/wmt18/translation-task.html

8http://lp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN

“http://www.statmt.org/moses

tensor2tensor has an internal tokenization mechanism which
was used for this language pair.

https://github.com/tensorflow/tensor2tensor

I2We did this to exploit cognates across Turkish and English.

and a = 1.0 for the rest. We evaluated our models using
the BLEU metric (Papineni et al. 2002) implemented in ten-
sor2tensor as r2t_bleu: case-insensitive and tokenized BLEU
for the Japanese—English tasks, and case-sensitive and deto-
kenized BLEU for the Turkish—English tasks.

Main Results
Recurrently Stacked Models vs Vanilla Models

Table 2 presents the results of the experiments using up to
6-layers of RS-NMT for all the datasets. In general, no mat-
ter which the dataset was used, the translation quality im-
proved as the same parameters were recurrently used in a
depth-wise fashion. In 9 out of 12 translation tasks, the 6-
layer RS-NMT models were better than the 2-layer vanilla
NMT models that have more parameters, meaning that our
RS-NMT models can compensate for the lack of parameters.
Furthermore, the performance of a 6-layer RS-NMT model
approaches that of the vanilla 6-layer NMT model. For the
resource-richest ASPEC dataset, the 6-layer RS-NMT mod-
els were better than the 1-layer vanilla NMT models by 3.92
and 7.85 BLEU points, respectively, and they were worse
than the 6-layer vanilla NMT models by only 1.57 and 1.28
BLEU points, respectively. Similar observations hold for the
WMT, KFTT, and GCP datasets.

For the resource-poorest ALT Japanese-to-English trans-
lation, however, we did not observe much difference among
the 1-layer, 6-layer vanilla NMT, and 6-layer RS-NMT mod-
els. Although our method does not seem to work well for
ALT, we believe that this is related to the poor translation
performance of NMT in such low-resource scenarios.

Effect of Corpora Sizes on Translation Quality

Figure 2 shows the difference in the performance between
the RS-NMT and the vanilla NMT when we vary the size of
the training data for the same datasets. We plot the BLEU
scores for GCP English-to-Japanese, ASPEC English-to-
Japanese, and WMT Turkish-to-English translation. While
it is obvious that reducing the size of training data deteri-
orates the BLEU scores, the trends in terms of difference
in performance between the RS-NMT and vanilla NMT re-
main almost the same. As such, we can safely say that our
proposed method is independent of corpus size and domain.

Analyzing Recurrently Stacked Models

In this section, we answer the following four questions to
better understand the RS-NMT models.

(a) Does RS-NMT memorize the number of recurrence?

(b) Is RS-NMT complementary with the back-translation
approach?

(c) Does RS-NMT behave differently from vanilla NMT in-
ternally?

(d) Can we further push the limits of parameter sharing?



#recurrently ALT GCP KFTT ASPEC TE TrEWM]ril; I
-En -En n- n-Tr

stacked layers | Ja-En | En-Ja | Ja-En | En-Ja | Ja-En | En-Ja | Ja-En | En-Ja test17 | testl8 | testl7 | testl8
1 7.59 10.59 | 21.95 | 23.89 | 21.64 | 25.00 | 23.28 | 32.19 | 13.08 | 13.75 | 12.45 11.94

2 7.60 1092 | 2324 | 2447 | 2450 | 28.53 | 27.84 | 38.54 | 15.19 | 1595 | 15.07 | 14.62

3 7.99 11.14 | 2342 | 25.02 | 25.84 | 29.90 | 28.05 | 39.26 | 15.80 | 16.39 | 1598 | 14.68

4 791 11.30 | 2433 | 25.28 | 26.23 | 30.36 | 28.08 | 39.31 | 1638 | 17.05 | 16.52 | 14.93

5 8.28 11.30 | 23.95 | 2538 | 26.42 | 30.78 | 28.02 | 38.86 | 16.63 | 17.12 | 16.60 | 15.51

6 8.26 11.37 | 24.36 | 25.84 | 26.51 | 30.83 | 27.20 | 40.04 | 16.68 | 17.31 | 16.59 | 15.77
2-layer model 8.35 11.90 | 2423 | 25.62 | 24.14 | 30.05 | 28.06 | 38.91 | 16.61 17.17 | 16.55 15.37
6-layer model 8.47 13.21 | 24.67 | 2622 | 27.19 | 32.72 | 2877 | 41.32 | 17.80 | 1836 | 17.99 | 16.29

Table 2: Results (BLEU scores) for our experiments. The last two rows indicate the vanilla NMT models without any parameter
sharing. The results in bold indicate the best values among the diverse models of the proposed RS-NMT.
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Figure 2: BLEU scores of the 6-layer vanilla NMT and RS-
NMT models trained on different sizes of data. WMT Tr-En
shows the results for test18.

(a) #Recurrence Memorized by RS-NMT

Referring to Table 2, the performance of RS-NMT models
seems to stabilize with the increasing depth of RS. As such,
we expected the representations generated by deep RS will
be robust and thus enable us to use fewer layers of RS dur-
ing decoding as compared to during training. To confirm
whether this holds or not, we trained /N-layer RS models
and used M times of recurrence during testing, taking GCP
English-to-Japanese task as an example. Here, we evaluated
two configurations: (1) one where we performed the same
depth of RS for both the encoder and decoder, and (2) one
where the depth of RS for the encoder was the same as for
training while the depth of RS for the decoder was varied.
For example, a trained 6-layer RS-NMT model was tested
with (1) do 1 to 8 times of RS for both the encoder and de-
coder and (2) do 6 times of RS for the encoder (same as
training) but do 1 to 8 times of RS for the decoder.

Figure 3 summarizes the BLEU scores obtained with the
above two configurations. Once the NMT model has been
trained to use IV RS layers, it is unable to perform optimally
if N RS layers are not used for decoding. Beside that, there
are three crucial observations. Although they are applicable
to all V-layer RS-NMT models, we explain them, taking our
6-layer model as an example.

First, the computation of the most useful and hence the
most reliable features takes place at the deepest layer of

recurrence. For a 6-layer RS-NMT model, using both the
encoder and the decoder just once during decoding, gave a
BLEU of 2.56. This went up to 4.45 when using 6 times of
recurrence for the encoder (same as during training) and the
layer of the decoder just once. However, as we performed
more times of recurrence, the BLEU jumped drastically.
This could imply that the NMT model avoids the learning
of extremely reliable/complex features at shallower layers.
At the very least, there are no detrimental effects of RS. Fur-
thermore, RS of the encoder for the same number of times
as during training is also important.

Second, for a 6-layer RS model, the difference between
decoding using 6-layer RS and 5-layer RS was not signifi-
cant. Thus, deep RS leads to robustness during decoding and
this means that as we train models using a large number of
RS, it should be possible to use fewer RS during decoding.

Third, when we used deeper RS than what had been used
for training, the BLEU score started dropping again. This in-
dicates that the model has not learned to extract complex fea-
tures beyond what it has been trained for. However, once the
model has been trained for non-zero number of recurrences,
the drop in quality is less severe as can be seen for a 3-layer
RS-NMT model being decoded for more than 3 times of re-
currence. Eventually, using a different layer stacking config-
uration for training and decoding leads to only sub-optimal
results and thus we conclude that in its current form, the
RS-NMT is unable to generalize the variation in the number
of recurrence between training and decoding, even though
it can use fewer number of recurrences during decoding for
reasonable translation quality.

In the future, we will see what happens when we train
deeper RS models to identify the limit of recurrence. In
this way, we can identify the zone of tolerance and thus
use different depths of RS layers depending on the use
case. One obvious idea is to use shallower RS models for
back-translation experiments (Sennrich, Haddow, and Birch
2016a), where we can afford to sacrifice the back-translation
quality for processing speed because each additional layer
demands more computing time.

(b) RS-NMT and Back-Translation

Since back-translation is one of the most reliable ways
to boost translation quality (Sennrich, Haddow, and Birch
2016a), we evaluated its impact on our proposed method. We
experimented with the GCP and WMT tasks, using 1.55M
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Figure 3: BLEU scores of the RS-NMT models for the GCP English-to-Japanese task with diverse depths of RS layers during

decoding.
WMT, Tr-En WMT, En-Tr
Sf;gﬁggrﬁl r;tg . GCP, Ja-En | GCP, En-Ja testl?7 testI8 testl7 testI8
No Yes No Yes No Yes No Yes No Yes No Yes
1 21.95 | 23.90 | 23.89 | 25.47 | 13.08 | 16.36 | 13.75 | 16.52 | 12.45 | 17.54 | 11.94 | 15.02
2 23.24 | 24.79 | 24.47 | 26.56 | 15.19 | 18.07 | 1595 | 1842 | 15.07 | 19.34 | 14.62 | 16.64
3 23.42 | 24.79 | 25.02 | 26.66 | 15.80 | 19.05 | 16.39 | 19.48 | 1598 | 20.30 | 14.68 | 17.24
4 2433 | 25.17 | 25.28 | 27.31 | 16.38 | 19.24 | 17.05 | 19.67 | 16.52 | 20.55 | 14.93 | 17.56
5 23.95 | 24.92 | 25.38 | 27.08 | 16.63 | 19.17 | 17.12 | 20.00 | 16.60 | 20.55 | 15.51 | 17.97
6 2436 | 25.82 | 25.84 | 27.55 | 16.68 | 19.55 | 17.31 | 20.41 | 16.59 | 20.89 | 15.77 | 17.78
6-layer model | 24.67 | 25.91 | 26.22 | 28.75 | 17.80 | 21.19 | 18.36 | 21.95 | 17.99 | 22.22 | 16.29 | 19.18

Table 3: Results (BLEU scores) of using back-translated data for the GCP and WMT tasks. The “Yes” and “No” columns
indicate the involvement of back-translated data. Higher BLEU scores are in bold.

lines of Japanese and English monolingual corpora for GCP
(Imamura, Fujita, and Sumita 2018) and 2.63M lines of
Turkish and English monolingual corpora for WMT, sepa-
rately for each translation direction. We generated pseudo-
parallel corpora by back-translating the monolingual sen-
tences using the 1-layer models for the opposite transla-
tion direction,!® regarding their speed. We then trained from
scratch the 6-layer vanilla NMT and up to 6-layer RS-NMT
models on the mixture of the pseudo-parallel and the original
parallel corpora. To compensate for the additional data, we
trained both the GCP Japanese-to-English and the English-
to-Japanese models for 200k iterations on 1 GPU. Simi-
larly, we trained the WMT English-to-Turkish and Turkish-
to-English models for 150k iterations on 4 GPUs.

Table 3 provides the results. Despite no increase in
the number of parameters, the presence of back-translated
data improved the translation quality for all the translation
tasks. The 2-layer RS-NMT trained using additional back-
translated data already outperformed the 6-layer vanilla
NMT models trained only on the original parallel corpus.
It is clear that the gains using additional layers of recurrence

For example, we used the 1-layer Japanese-to-English model
in order to translate the Japanese monolingual sentences for train-
ing English-to-Japanese NMT.

in a low-resource scenario is much higher than the gains in a
resource-rich scenario, despite the potentially lower quality
of back-translated data.

(c) Visualizing Recurrently Stacked Models

To acquire a deeper understanding of what happens in
RS models, we visualize the attentions across all attention
heads for each stacked layer. In particular, we consider the
GCP Japanese-to-English vanilla NMT and RS-NMT mod-
els trained using back-translated data and visualize'* their
encoder’s self-attentions and the decoder’s self- and cross-
attentions. Due to lack of space we only show the visual-
izations for attentions of a target word with the entire source
sentence. See several sentence-level self- and cross-attention
visualizations in our supplementary material.'>

Figure 4 displays the heat-maps for the 8-head encoder-
decoder cross-attention across all 6-layers when generating
the first translated word, “how,” for an input Japanese sen-
tence consisting of nine tokens, “dono-youni choushi ga sug-
ure nai no desu ka ?” (How don’t you feel well?). The x-axis
shows the input tokens with a prefix indicating an attention
head represented by a different color. The y-axis shows the

“We used the Bokeh Python library.
"Shitps://github.com/prajdabre/RSNMT
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Figure 5: Visualization of attention entropies of the same
vanilla (left) and recurrent stacking (right) models as in Fig-
ure 4 for another input sentence, “o tsuri no 200 yen desu .”
(Here is your 200 yen change.). The x-axis indicates the at-
tention heads. The y-axis indicates the depth of the layer. A
darker color means higher value of entropy.
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6 layers with 0-to-5 in suffix representing 1st-to-6th layer,
respectively. Each cell shows the cross-attention given by a
head at a layer to a source word, when generating the target
word, where darker color means stronger attention.

As shown in the figure, the attention mechanism behaves
differently for the vanilla NMT and RS-NMT models. While
there is no consistency in the sharpness of attention as we go
deeper in the vanilla NMT model, the attention tends to be-
come less sharp as we go deeper in the RS-NMT model. For
a further understanding, we produced a heat-map (Figure 5)
that displays the entropies of the attentions for each attention
head in each layer. While we do not know what this means
in the context of the vector space representations of an NMT
model, we can say that the attention entropy tends to grow
as we move towards deeper layers in RS-NMT models. An
increase in attention entropy means that the attention mech-
anism considers the contribution from more words by giving
them similar weights. Consider the work on average atten-
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Figure 4: Visualization of the cross-attention of vanilla NMT (top) and RS-NMT (bottom) models trained on the Japanese-to-
English GCP corpus and back-translated data when generating a single word in the target language for an input sentence. The
x-axis indicates the input sentence and the attention heads (marked by different colors). The y-axis indicates the depth of the
layer.

tion networks (Xiong, Zhang, and Su 2018) where the self-
attention weights were statically set as 1/L where L is the
length of the sequence against which the attention is com-
puted for a given word. Average attention has the highest
entropy which is similar to the case of the attention com-
puted in RS networks. As such, our observation might be
an explanation of why average attention networks work well
despite using a trivial self-attention mechanism.

Another probable explanation lies in the understanding of
what Recurrent Neural Networks (RNN), such as LSTMs
(Hochreiter and Schmidhuber 1997) do. At each time-step,
an RNN refines the representation of a sequence as it pro-
cesses each new word with the same parameters. As such,
we think that the deeper layers of the RS-NMT model are
forced to learn more abstract representations through refine-
ment of the previous ones. The parameter sharing (and thus
the reduction in representation power) most likely causes all
artificial neurons to work in unison and uniformly distributes
the load of generating reliable representations. This could
mean that the representation for each word is rather generic.
And this in turn causes the attention mechanism to seek out
more work for the decoder to compute reliable representa-
tions. Since the attentions for RS-NMT and vanilla NMT
differ greatly, they might have different applications. For ex-
ample, RS-NMT attentions might be more suited for phrase-
to-phrase matching due to the wide attention spans it tends
to exhibit. It would be worthwhile to visualize the word- and
sentence-level representations to explore our claims.

(d) Limits of Parameter Sharing

So far, we have only shared parameters across layers but
have kept the parameter of the encoder and decoder layers
separate. We also explored what happens when we further
share parameters between the encoder and the decoder. Note
that we can only share the parameters for self-attention and
the feed-forward layers because the cross-attention layers
are specific to the decoder. To this end, we trained two ad-



WMT, Tr-En
GCP, En-Ja test18
w/o w/ w/o w/

23.89 | 23.19 | 13.75 | 13.15
24.47 | 2329 | 1595 | 15.18
25.02 | 24.03 | 16.39 | 16.14
25.28 | 2442 | 17.05 | 16.42
25.38 | 24.57 | 17.12 | 16.55
25.84 | 2498 | 17.31 | 16.67
6-layer model | 26.22 | 26.32 | 18.36 | 18.48

#recurrently
stacked layers

AN AW N =

Table 4: A comparison of models with and without encoder-
decoder parameter sharing. Higher BLEU scores are in bold.

ditional types of model along with the ones described in the
beginning of the experimental section:

Shared-EncDec: 6-layer model without any shared param-
eters across layers but shared self-attention and feed-
forward layer parameters across the encoder and decoder.

Recurrently Stacked & Shared-EncDec 1, 2, 3, 4, 5, and
6-layer models with parameters shared across all layers
and across the encoder and decoder.

Table 4 compares RS-NMT and vanilla NMT models
for GCP English-to-Japanese and WMT Turkish-to-English
tasks. These models either do or do not share parameters
between the encoder and the decoder. Once again, as we in-
creased the number of RS, the translation quality improved
for both translation tasks. However, encoder-decoder param-
eter sharing had a negative effect on RS-NMT models, al-
though the reduction was within 1.0 BLEU points. Surpris-
ingly, this encoder-decoder parameter sharing had a slightly
positive effect on vanilla NMT models. Currently, we are not
sure why this happens and leave this for future work.

Table 5 gives the cost-benefit analysis for model size ver-
sus loss in terms of BLEU for GCP English-to-Japanese
and WMT Turkish-to-English tasks. The number of param-
eters in a 6-layer vanilla NMT model for Turkish-to-English
task is 158.8M which drops to 102.1M by sharing the self-
attention and feed-forward layer parameters between the en-
coder and the decoder. The number of parameters for the
RS-NMT models is 48.6M no matter how many layers are
in the stack and this number further drops to 39.1M when
sharing parameters between the encoder and the decoder.
Recurrently stacking of layers and sharing them between the
encoder and decoder leads to a loss of 1.66 BLEU which is
significant but given that we eliminate about 75% of the pa-
rameters such a loss is quite acceptable. Similarly, for GCP
English-to-Japanese task, the RS-NMT models are approxi-
mately 53-57% smaller than the 6-layer vanilla NMT mod-
els and lose only about 0.38—1.24 BLEU points.'¢

If one considers a resource-rich scenario like ASPEC
English-to-Japanese translation where the BLEU scores are
in the lower 40’s, losing 2—3 BLEU points is not a major loss
given that the parameter sharing models are significantly
smaller than their vanilla counterparts.

1®Note that the Turkish-to-English models have a shared matrix
for encoder embedding, decoder embedding and softmax and thus
will have greater savings in terms of parameters.

Related Work

The most prominent way of reducing the size of a neural
model is knowledge distillation (Hinton, Vinyals, and Dean
2015; Freitag, Al-Onaizan, and Sankaran 2017), which re-
quires training one or more parent models and thus is a time-
consuming task. Our approach is orthogonal to knowledge
distillation and proposes to shrink the sizes of parent models.
It is possible for both these methods could be combined to
yield extremely compact NMT models. The work on zero-
shot NMT (Johnson et al. 2017) shows that it is possible
for multiple language pairs to share a single encoder and
decoder without an appreciable loss in translation quality.
As a result, multiple language pairs can share the same en-
coder and decoder parameters without significant loss in the
translation quality, thereby avoiding the need to train sepa-
rate models per language pair. For languages that share or-
thographies (Sennrich, Haddow, and Birch 2016b) or have
orthographies that can be mapped to a common script, us-
ing a shared embedding layer can help reduce the model size
significantly and enable cognate sharing. However, these ap-
proaches do not consider the effect of sharing the parameters
across the stacked layers in the encoder or the decoder.

The work on Universal Transformer (Dehghani et al.
2018) shows that feeding the output of the multi-layer en-
coder (and decoder) to itself repeatedly leads to an im-
provement in quality for English-to-German translation. Our
method is similar to this, except that our RS-NMT model
has the same size as that of a 1-layer NMT model and yet
manages to approach the translation quality achieved by a 6-
layer vanilla NMT model. As such, the focus of our work
is on training models with significantly fewer parameters
whereas Dehghani et al. (2018) have focused on improving
the state-of-the-art. We additionally show that the RS-NMT
can benefit from back-translated data.

Conclusion

In this paper, we have proposed a novel modification to the
NMT architecture where we share parameters across the lay-
ers of a N-layer model leading to a recurrently stacked NMT
(RS-NMT) model. As a result, our model has the same size
as that of a single-layer NMT model and gives performance
approaching that of a 6-layer vanilla NMT model where the
parameters across layers are not shared. This shows that it is
possible to train compact NMT models without a large loss
in translation quality. We also showed that our approach is
complementary with the back-translation approach. We also
visualized the attentions of our models and showed that the
internal working of RS-NMT is quite different from vanilla
NMT models. We believe that our work will promote the re-
search of techniques that rely on reusability of parameters
and hence simplify the existing NMT architectures.

In the future, we will perform an in-depth analysis of the
limits of recurrent stacking of layers in addition to com-
bining our methods with knowledge distillation approaches
for high-performance and compact NMT modeling. We also
plan to experiment with more complex mechanisms to com-
pute the recurrent information during stacking for improving
NMT performance.



Recurrent | Shared GCP, En-Ja WMT, Tr-En
Stacking | EncDec | #Params % Params BLEU | #Params %oParams | BLEU | BLEU
Reduced Reduced | testl7 | testl8
207.9M 0 26.22 158.8M 0 17.80 | 18.36
v 151.2M 37.50 26.32 102.1M 35.68 17.51 18.48
v 97.6M 53.02 25.84 48.6M 69.38 16.68 17.31
v v 88.2M 57.57 24.98 39.1M 75.33 16.14 | 16.67

Table 5: Reduction in the number of parameters and BLEU scores by recurrently stacking of layers or encoder-decoder param-
eter sharing for GCP English-to-Japanese and WMT Turkish-to-English tasks. All results are for 6-layer models.
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